首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   519篇
  免费   34篇
  553篇
  2022年   11篇
  2021年   17篇
  2020年   9篇
  2019年   4篇
  2018年   8篇
  2017年   12篇
  2016年   16篇
  2015年   24篇
  2014年   41篇
  2013年   36篇
  2012年   51篇
  2011年   35篇
  2010年   16篇
  2009年   23篇
  2008年   21篇
  2007年   24篇
  2006年   16篇
  2005年   9篇
  2004年   14篇
  2003年   16篇
  2002年   18篇
  2001年   9篇
  2000年   9篇
  1999年   5篇
  1998年   4篇
  1997年   8篇
  1993年   3篇
  1992年   3篇
  1991年   9篇
  1990年   3篇
  1989年   4篇
  1988年   4篇
  1987年   6篇
  1986年   3篇
  1985年   5篇
  1984年   8篇
  1983年   8篇
  1982年   2篇
  1981年   5篇
  1978年   3篇
  1975年   2篇
  1974年   2篇
  1971年   2篇
  1970年   2篇
  1968年   3篇
  1967年   3篇
  1966年   2篇
  1916年   1篇
  1899年   3篇
  1897年   1篇
排序方式: 共有553条查询结果,搜索用时 15 毫秒
51.
Vibrio fischeri cells are the sole colonists of a specialized light organ in the mantle cavity of the sepiolid squid Euprymna scolopes. The process begins when the bacteria aggregate in mucus secretions outside the light organ. The cells eventually leave the aggregate, enter the light organ, and encounter a rich supply of peptides. The need to dissociate from mucus and presumably utilize peptides led us to hypothesize that protease activity is integral to the colonization process. Protease activity associated with whole cells of Vibrio fischeri strain ES114 was identified as the product of a putative cell membrane-associated aminopeptidase (PepN). To characterize this activity, the aminopeptidase was cloned, overexpressed, and purified. Initial steady-state kinetic studies revealed that the aminopeptidase has broad activity, with a preference for basic and hydrophobic side chains and k(cat) and K(m) values that are lower and smaller, respectively, than those of Escherichia coli PepN. A V. fischeri mutant unable to produce PepN is significantly delayed in its ability to colonize squid within the first 12 h, but eventually it establishes a wild-type colonization level. Likewise, in competition with the wild type for colonization, the mutant is outcompeted at 12 h postinoculation but then competes evenly by 24 h. Also, the PepN-deficient strain fails to achieve wild-type levels of cells in aggregates, suggesting an explanation for the initial colonization delay. This study provides a foundation for more studies on PepN expression, localization, and role in the early stages of squid colonization.  相似文献   
52.
The R21C substitution in cardiac troponin I (cTnI) is the only identified mutation within its unique N-terminal extension that is associated with hypertrophic cardiomyopathy (HCM) in man. Particularly, this mutation is located in the consensus sequence for β-adrenergic-activated protein kinase A (PKA)-mediated phosphorylation. The mechanisms by which this mutation leads to heart disease are still unclear. Therefore, we generated cTnI knock-in mouse models carrying an R21C mutation to evaluate the resultant functional consequences. Measuring the in vivo levels of incorporated mutant and WT cTnI, and their basal phosphorylation levels by top-down mass spectrometry demonstrated: 1) a dominant-negative effect such that, the R21C+/- hearts incorporated 24.9% of the mutant cTnI within the myofilament; and 2) the R21C mutation abolished the in vivo phosphorylation of Ser(23)/Ser(24) in the mutant cTnI. Adult heterozygous (R21C+/-) and homozygous (R21C+/+) mutant mice activated the fetal gene program and developed a remarkable degree of cardiac hypertrophy and fibrosis. Investigation of cardiac skinned fibers isolated from WT and heterozygous mice revealed that the WT cTnI was completely phosphorylated at Ser(23)/Ser(24) unless the mice were pre-treated with propranolol. After propranolol treatment (-PKA), the pCa-tension relationships of all three mice (i.e. WT, R21C+/-, and R21C+/+) were essentially the same. However, after treatment with propranolol and PKA, the R21C cTnI mutation reduced (R21C+/-) or abolished (R21C+/+) the well known decrease in the Ca(2+) sensitivity of tension that accompanies Ser(23)/Ser(24) cTnI phosphorylation. Altogether, the combined effects of the R21C mutation appear to contribute toward the development of HCM and suggest that another physiological role for the phosphorylation of Ser(23)/Ser(24) in cTnI is to prevent cardiac hypertrophy.  相似文献   
53.
54.
55.
The reggie/flotillin proteins are implicated in membrane trafficking and, together with the cellular prion protein (PrP), in the recruitment of E-cadherin to cell contact sites. Here, we demonstrate that reggies, as well as PrP down-regulation, in epithelial A431 cells cause overlapping processes and abnormal formation of adherens junctions (AJs). This defect in cell adhesion results from reggie effects on Src tyrosine kinases and epidermal growth factor receptor (EGFR): loss of reggies reduces Src activation and EGFR phosphorylation at residues targeted by Src and c-cbl and leads to increased surface exposure of EGFR by blocking its internalization. The prolonged EGFR signaling at the plasma membrane enhances cell motility and macropinocytosis, by which junction-associated E-cadherin is internalized and recycled back to AJs. Accordingly, blockage of EGFR signaling or macropinocytosis in reggie-deficient cells restores normal AJ formation. Thus, by promoting EGFR internalization, reggies restrict the EGFR signaling involved in E-cadherin macropinocytosis and recycling and regulate AJ formation and dynamics and thereby cell adhesion.  相似文献   
56.
The aim of this study is to analyze shape variation in the xenarthran femur to gain insights into their behavior and locomotion. Specimens of both Cingulata (armadillos and glyptodonts) and Pilosa (anteaters and sloths) were studied and within each group body mass varies by several orders of magnitude. The main focus of the analysis was allometric variation in femoral shape in the three groups studied, armadillos, glyptodonts, and pilosans. Three dimensional coordinates were recorded for 40 homologous landmarks on each of 51 xenarthran femurs. The data were analyzed by geometric morphometric methods, and form space analysis was used to identify the allometric variation in each of the three groups. Across all groups, larger specimens tended to have larger articular surfaces, more robust femora generally, and the shape of the femoral condyles was more suited to extended postures. In addition, in larger specimens the medial condyle was much larger than the lateral condyle and the third trochanter was located more distally. The larger armadillo femora had a greater trochanter located considerably proximal to the femoral head and this is thought to improve femoral extension, but in glyptodonts and pilosans the larger specimens had a greater trochanter that was far lateral to the femoral head and this is interpreted as enhancing femoral rotation.  相似文献   
57.
This study evaluated the effects of bone marrow-derived mesenchymal stem cells (BMSCs) or their conditioned medium (CM) on the repair and prevention of Acute Kidney Injury (AKI) induced by gentamicin (G). Animals received daily injections of G up to 20 days. On the 10(th) day, injections of BMSCs, CM, CM+trypsin, CM+RNase or exosome-like microvesicles extracted from the CM were administered. In the prevention groups, the animals received the BMSCs 24 h before or on the 5(th) day of G treatment. Creatinine (Cr), urea (U), FENa and cytokines were quantified. The kidneys were evaluated using hematoxylin/eosin staining and immunohystochemistry. The levels of Cr, U and FENa increased during all the periods of G treatment. The BMSC transplantation, its CM or exosome injections inhibited the increase in Cr, U, FENa, necrosis, apoptosis and also increased cell proliferation. The pro-inflammatory cytokines decreased while the anti-inflammatory cytokines increased compared to G. When the CM or its exosomes were incubated with RNase (but not trypsin), these effects were blunted. The Y chromosome was not observed in the 24-h prevention group, but it persisted in the kidney for all of the periods analyzed, suggesting that the injury is necessary for the docking and maintenance of BMSCs in the kidney. In conclusion, the BMSCs and CM minimized the G-induced renal damage through paracrine effects, most likely through the RNA carried by the exosome-like microvesicles. The use of the CM from BMSCs can be a potential therapeutic tool for this type of nephrotoxicity, allowing for the avoidance of cell transplantations.  相似文献   
58.
Exercise training (ET) is an important intervention for chronic diseases such as diabetes mellitus (DM). However, it is not known whether previous exercise training intervention alters the physiological and medical complications of these diseases. We investigated the effects of previous ET on the progression of renal disease and cardiovascular autonomic control in rats with streptozotocin (STZ)-induced DM. Male Wistar rats were divided into five groups. All groups were followed for 15 weeks. Trained control and trained diabetic rats underwent 10 weeks of exercise training, whereas previously trained diabetic rats underwent 14 weeks of exercise training. Renal function, proteinuria, renal sympathetic nerve activity (RSNA) and the echocardiographic parameters autonomic modulation and baroreflex sensitivity (BRS) were evaluated. In the previously trained group, the urinary albumin/creatinine ratio was reduced compared with the sedentary diabetic and trained diabetic groups (p<0.05). Additionally, RSNA was normalized in the trained diabetic and previously trained diabetic animals (p<0.05). The ejection fraction was increased in the previously trained diabetic animals compared with the diabetic and trained diabetic groups (p<0.05), and the myocardial performance index was improved in the previously trained diabetic group compared with the diabetic and trained diabetic groups (p<0.05). In addition, the previously trained rats had improved heart rate variability and BRS in the tachycardic response and bradycardic response in relation to the diabetic group (p<0.05). This study demonstrates that previous ET improves the functional damage that affects DM. Additionally, our findings suggest that the development of renal and cardiac dysfunction can be minimized by 4 weeks of ET before the induction of DM by STZ.  相似文献   
59.
The Leishmania major aquaglyceroporin, LmAQP1, is responsible for the transport of antimonite [Sb(III)], an activated form of Pentostam or Glucantime. Downregulation of LmAQP1 provides resistance to trivalent antimony compounds and increased expression of LmAQP1 in drug‐resistant parasites can reverse the resistance. Besides metalloid transport, LmAQP1 is also permeable to water, glycerol, methylglyoxal, dihydroxyacetone and sugar alcohols. LmAQP1 also plays a physiological role in volume regulation and osmotaxis. In this study, we examined the role of extracellular C‐loop glutamates (Glu143, Glu145 and Glu152) in LmAQP1 activity. Alteration of both Glu143 and Glu145 to alanines did not affect either the biochemical or physiological properties of the protein, suggesting that neither residue is critical for LmAQP1 activity. Alteration of Glu152 to alanine, aspartate and glutamine affected metalloid transport in the order, wild‐type > E152Q > E152D > E152A. In fact, axenic amastigotes expressing E152A LmAQP1 accumulated negligible levels of either arsenite [As(III)] or Sb(III). Alteration of Glu152 significantly affected volume regulation and osmotaxis, suggesting that Glu152 is critical for the physiological activity of the parasite. More importantly, alteration of Glu152 to alanine did not affect glycerol permeability. Although the metalloids, As(III) and Sb(III), are believed to be transported through aquaglyceroporin channels as they behave as inorganic molecular mimic of glycerol, this is the first report where metalloid and glycerol transport can be dissected by a single mutation at the extracellular pore entry of LmAQP1 channel.  相似文献   
60.
Two groups of 11-week-old swine (40 miniature and 40 domestic swine) received a single oral administration of 1.9 X 10(8) Bq (5.2 mCi) of 241Am citrate, and groups of eight animals, four of each type, were killed and sampled at 1, 2, 4, 8, 16, 24, 48, 72, and 96 h and 30 days later. Uptake and excretion patterns of the radioactivity appeared to occur in three phases: rapid uptake, rapid excretion, and then a slower excretion. All animals were systematically dissected, and the eviscerated carcasses were autoclaved for separation of bone and muscle. The predominant site of deposition was bone, and autoclaving had little effect on releasing 241Am from either bone or muscle. The maximum fractional gastrointestinal absorption of 1.1 X 10(-3) occurred 8 h after radionuclide administration. The tissue distribution data suggest partitions of 50, 20, and 30%, for bone, liver, and other soft tissues, respectively. Two metabolic models were evaluated: a modified Mewhinney-Griffith model and the ICRP 30 model to compare the biological data with model predictions. All models underestimated the actual early time data, but the fits to the experimental results were better at later times.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号