The structural similarities between N1 substituted 1,4‐dihydropyridines and the known gp41 inhibitors, NB ‐2 and NB ‐64 , were considered in the current research for the design of some novel anti‐HIV‐1 agents. A series of novel 4‐[4‐arylpyridin‐1(4H)‐yl]benzoic acid derivatives were synthesized and after a comprehensive structural elucidation were screened for in vitro anti‐HIV‐1 activity. Most of the tested compounds displayed moderate to good inhibitory activity against HIV‐1 growth and were evaluated for in vitro cytotoxic activity using XTT assay at the concentration of 100 μm . Among the tested compounds, 1c , 1d and 1e showed potent anti‐HIV‐1 activity against P24 expression at 100 μm with inhibition percentage of 84.00%, 76.42% and 80.50%, respectively. All the studied compounds possessed no significant cytotoxicity on MT‐2 cell line. The binding modes of these compounds to gp41 binding site were determined through molecular docking study. Docking studies proved 1a as the most potent compound and binding maps exhibited that the activities might be attributed to the electrostatic and hydrophobic interactions and additional H‐bonds with the gp41 binding site. The Lipinski's ‘rule of five’ and drug‐likeness criteria were also calculated for the studied compounds. All derivatives obeyed the Lipinski's ‘rule of five’ and had drug‐like features. The findings of this study suggest that novel 4‐[4‐arylpyridin‐1(4H)‐yl]benzoic acid might be a promising scaffold for the discovery and development of novel anti‐HIV‐1 agents. 相似文献
Current investigations regarding social stress primarily focus on the health consequences of being in stressful social hierarchies. The repetitive nature of social conflicts seems to favor an induction of hyperalgesia or hypoalgesia, both in rodents and humans. Additionally, social conflicts may affect the immune system. In order to better establish the pain and immune responses to stress, the present study implemented a sensory contact model on 32 male BALB/c mice. Subsequent to establishing a dominance/submissive social relationship, each mouse was injected with formalin (20 μl, 2%) and their pain behavior was scored and serum concentrations of proinflammatory cytokines IL-1 and IL-6, and corticosterone were also measured. Test results revealed that subordinate mice were hypoalgesic during chronic phase of formalin test compared to control and dominant mice (P<0.05). On the other hand, subordinate mice were hyperalgesic compared to dominant mice during the whole acute phase of formalin test (P<0.05). Corticosterone, IL-1 and IL-6 concentrations were much higher in serum of dominant and subordinate mice than in the control group (p<0.05). The results indicated that, although both dominant and subordinate animals displayed an increase in serum corticosterone and proinflammatory cytokines during social interactions, their response to pain perception differently was affected with the social status. 相似文献
The improvement of the growth and quality of medicinal plants under stress is of significance, worldwide. The hypothesis was to alleviate salinity stress in Mentha piperita by enhancing nutrient uptake using magnetically treated water, which to our knowledge has not been previously investigated. The objective was to test the effects of magnetized water (using alternating magnetic fields) (main plots, M1-M4 representing control, 100, 200, and 300 mT, respectively), salinity (subplots, S1-S4 representing control, 40, 80, and 120 mM NaCl, respectively), and growth medium (sub-subplots, X1-X4 representing coco peat, palm, coco peat + perlite, and palm + perlite, respectively) on M. piperita nutrient uptake in the greenhouse. The M treatments, especially the 100 and 200 mT levels, significantly increased plant N (1.08%, S3M4X1), P (0.89%, S3M3X1), K (3.23%, S3M3X1), Ca (53.6 mg/kg, S4M4X4), and Mg (39.63 mg/kg, S3M3X2) concentrations (compared with control at 0.71, 0.49, 2.4, 26.63, 1.63) even at the highest level of salinity. Magnetically treated water also significantly enhanced plant Fe and Zn concentration to a maximum of 750 μg/kg (M4S3X1) and 94.67 μg/kg (S4M4X3), under salinity stress, respectively. The single and the combined use of organic and mineral media significantly affected plant nutrient uptake, especially when used with the proper rate of M treatment. If combined with the proper growth medium, the magnetized water may be more effective on the alleviation of salt stress in Mentha piperita by enhancing nutrient uptake.
Recent advances in tracking technologies such as GPS or video tracking systems describe the movement paths of individuals in unprecedented details and are increasingly used in different fields, including ecology. However, extracting information from raw movement data requires advanced analysis techniques, for instance to infer behaviors expressed during a certain period of the recorded trajectory, or gender or species identity in case data is obtained from remote tracking. In this paper, we address how different movement features affect the ability to automatically classify the species identity, using a dataset of unicellular microbes (i.e., ciliates). Previously, morphological attributes and simple movement metrics, such as speed, were used for classifying ciliate species. Here, we demonstrate that adding advanced movement features, in particular such based on discrete wavelet transform, to morphological features can improve classification. These results may have practical applications in automated monitoring of waste water facilities as well as environmental monitoring of aquatic systems. 相似文献
Despite advances in the treatment of ALL, in most patients long-term survival rates remain unsatisfactory. The objective of the present study was to investigate the anti-cancer effects of Prostaglandin E2 (PGE2) in two different ALL cell lines (CCRF-CEM (T-ALL) and Nalm-6 (B-ALL)). The anti-leukemic effects of PGE2 were also compared with two epigenetic compounds (trichostatin A and 5-aza-2'-deoxycytidine). MTT assay was used to assess growth inhibition by anti-cancer drugs in these cells. All three compounds were shown to induce apoptosis in both ALL cell lines using flow cytometry and Western blotting. To evaluate the differentiation induction by these agents, the expressions of CD19 and CD38 markers on Nalm-6 cell line and CD7 marker on CCRF-CEM cell line were assayed. Surprisingly, the flow cytometric analysis showed a significant increase in CD markers expression in response to PGE2 treatments. We, for the first time, provide evidences that PGE2 has anti-leukemic effects and induces differentiation at micromolar ranges in both T- and B-cell derived ALL cell lines. Since T-ALL cells are insensitive to current chemotherapies, these findings may help the designing of new protocols for T-ALL differentiation therapy in the future. 相似文献
A novel folic acid functionalized terbium‐doped dendritic fibrous nanoparticle (Tb@KCC‐1‐NH2‐FA) with high surface area was synthesized using a novel hydrothermal protocol. In the present work, we report the fluorescent Tb‐doted nanomaterial with emission wavelength at 497 nm which confirms the formation of Tb@KCC‐1‐NH2‐FA. Synthesized nanoparticles were investigated through transmission electron microscope, field emission scanning electron Microscopy, Fourier transform infrared spectra, Brunauer‐Emmett‐Teller, energy dispersive X‐ray, Zeta potential and particle size distribution values and AFM (Atomic force microscopy) techniques. Specially, our desired nanomaterial which has FA moieties on the surface of Tb@KCC‐1‐NH2‐FA where interact with folate receptor (FR) which there is on the surface of the various cancer cells. For this purpose, fluorescence microscopy images were used to prove the uptake of FA based nanomaterial with FR‐positive MDA breast cancer and HT 29 colon cancer cells. Also HEK 293 normal cells as FR‐negative cells verified the specificity of our desired nanomaterial toward the FR‐positive cells. The cytotoxicity survey of Tb@KCC‐1‐NH2‐FA was examined by MTT assays against MDA breast cancer, HT 29 colon cancer and HEK 293 Normal cell lines which confirmed their biocompatible nature with any significant cytotoxic effects even for concentration higher than 900 μg/mL which could be used as a non‐toxic catalyst or carrier in biological ambient. Hence, Tb@KCC‐1‐NH2‐FA were synthesized using green and hydrothermal method; the process was simple with good productivity and desired nanocomposite was non‐toxic. 相似文献