首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   511篇
  免费   47篇
  2024年   2篇
  2023年   7篇
  2022年   9篇
  2021年   18篇
  2020年   8篇
  2019年   8篇
  2018年   14篇
  2017年   13篇
  2016年   26篇
  2015年   31篇
  2014年   41篇
  2013年   46篇
  2012年   53篇
  2011年   48篇
  2010年   26篇
  2009年   27篇
  2008年   23篇
  2007年   20篇
  2006年   24篇
  2005年   15篇
  2004年   16篇
  2003年   23篇
  2002年   11篇
  2001年   7篇
  2000年   2篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   5篇
  1995年   1篇
  1994年   1篇
  1992年   4篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1972年   1篇
  1967年   1篇
  1965年   1篇
排序方式: 共有558条查询结果,搜索用时 15 毫秒
61.
Selenium is an essential trace element in mammals, but is toxic at high levels. It is best known for its cancer prevention activity, but cancer cells are more sensitive to selenite toxicity than normal cells. Since selenite treatment leads to oxidative stress, and the Trx (thioredoxin) system is a major antioxidative system, we examined the interplay between TR1 (Trx reductase 1) and Trx1 deficiencies and selenite toxicity in DT cells, a malignant mouse cell line, and the corresponding parental NIH 3T3 cells. TR1-deficient cells were far more sensitive to selenite toxicity than Trx1-deficient or control cells. In contrast, this effect was not seen in cells treated with hydrogen peroxide, suggesting that the increased sensitivity of TR1 deficiency to selenite was not due to oxidative stress caused by this compound. Further analyses revealed that only TR1-deficient cells manifested strongly enhanced production and secretion of glutathione, which was associated with increased sensitivity of the cells to selenite. The results suggest a new role for TR1?in cancer that is independent of Trx reduction and compensated for by the glutathione system. The results also suggest that the enhanced selenite toxicity of cancer cells and simultaneous inhibition of TR1 can provide a new avenue for cancer therapy.  相似文献   
62.
Escherichia coli bacteria with extended-spectrum β-lactamase (ESBL) type CTX-M resistance were isolated from water samples collected close to research stations in Antarctica. The isolates had bla(CTX-M-1) and bla(CTX-M-15) genotypes and sequence types (ST) indicative of a human-associated origin. This is the first record of ESBL-producing enterobacteria from Antarctica.  相似文献   
63.
Breast cancers can recur after removal of the primary tumor and treatment to eliminate remaining tumor cells. Recurrence may occur after long periods of time during which there are no clinical symptoms. Tumor cell dormancy may explain these prolonged periods of asymptomatic residual disease and treatment resistance. We generated a dormancy gene signature from published experimental models and applied it to both breast cancer cell line expression data as well as four published clinical studies of primary breast cancers. We found that estrogen receptor (ER) positive breast cell lines and primary tumors have significantly higher dormancy signature scores (P<0.0000001) than ER- cell lines and tumors. In addition, a stratified analysis combining all ER+ tumors in four studies indicated 2.1 times higher hazard of recurrence among patients whose tumors had low dormancy scores (LDS) compared to those whose tumors had high dormancy scores (HDS) (p<0.000005). The trend was shown in all four individual studies. Suppression of two dormancy genes, BHLHE41 and NR2F1, resulted in increased in vivo growth of ER positive MCF7 cells. The patient data analysis suggests that disseminated ER positive tumor cells carrying a dormancy signature are more likely to undergo prolonged dormancy before resuming metastatic growth. Furthermore, genes identified with this approach might provide insight into the mechanisms of dormancy onset and maintenance as well as dormancy models using human breast cancer cell lines.  相似文献   
64.
65.
Pungency in Capsicum spp. is an important quality trait for pepper breeding. The perception of pungency in pepper is due to the presence of a group of compounds named capsaicinoids, only found within the Capsicum genus. How pungency is controlled at genetic and molecular levels has not been completely elucidated. The use of molecular markers to assess pungency trait is required for molecular breeding, despite the difficulty of development of universal markers for this trait. In this work, a DNA sequence possibly related to pungency with a high similarity to Pun1 locus was studied, and sequence analysis of this homolog revealed a 15?bp deletion in non-pungent pepper accessions. An allele-specific pair of primers was designed and specific fragments of 479?bp from non-pungent and 494?bp from pungent accessions were obtained. Polymorphism of this marker, named MAP1, was tested in a wide range of accessions, belonging to several Capsicum species, including pungent and non-pungent accessions of C. annuum L., and pungent accessions of C. chinense, C. baccatum, C. frutescens, C. pubescens, C. galapagoense, C. eximium, C. tovarii, C. cardenasii, and C. chacoense. All these Capsicum accessions were correctly discriminated. The marker suitability to assess pungency in domesticated and wild Capsicum species was demonstrated, and therefore it will be very useful in marker assisted selection (MAS). Moreover, MAP1 was located in a saturated pepper linkage map and its possible relationship with the Pun1 locus has been discussed. Among the available markers for this complex quality trait, the marker developed in this study is the most universal so far.  相似文献   
66.
67.
Sleep and Biological Rhythms - The current literature suggests that nighttime sleep is compromised during late pregnancy and early postpartum periods, but little is known about the 24-hour sleep...  相似文献   
68.
69.
Herpes simplex virus (HSV) types 1 and 2 are highly prevalent human neurotropic pathogens that cause a variety of diseases, including lethal encephalitis. The relationship between HSV and the host immune system is one of the main determinants of the infection outcome. Chemokines play relevant roles in antiviral response and immunopathology, but the modulation of chemokine function by HSV is not well understood. We have addressed the modulation of chemokine function mediated by HSV. By using surface plasmon resonance and crosslinking assays we show that secreted glycoprotein G (SgG) from both HSV-1 and HSV-2 binds chemokines with high affinity. Chemokine binding activity was also observed in the supernatant of HSV-2 infected cells and in the plasma membrane of cells infected with HSV-1 wild type but not with a gG deficient HSV-1 mutant. Cell-binding and competition experiments indicate that the interaction takes place through the glycosaminoglycan-binding domain of the chemokine. The functional relevance of the interaction was determined both in vitro, by performing transwell assays, time-lapse microscopy, and signal transduction experiments; and in vivo, using the air pouch model of inflammation. Interestingly, and in contrast to what has been observed for previously described viral chemokine binding proteins, HSV SgGs do not inhibit chemokine function. On the contrary, HSV SgGs enhance chemotaxis both in vitro and in vivo through increasing directionality, potency and receptor signaling. This is the first report, to our knowledge, of a viral chemokine binding protein from a human pathogen that increases chemokine function and points towards a previously undescribed strategy of immune modulation mediated by viruses.  相似文献   
70.
Despite numerous endometrial cancer cell lines, little is know about the progression and transition of primary cultured endometrial tumours. Herein, a stage I grade III endometrial adenocarcinoma was maintained in primary culture and the phenotypic and protein expression changes were observed in relation to passage number. At early passage numbers, cultured human endometrial cancer (CHEC) cells displayed classic epithelial cell morphology, growing in groups in a glandular structure and staining positive for cytokeratin. However, with increasing passage number, CHEC cells changed in morphology to display a stromal phenotype which was accompanied by a significant reduction in cytokeratin and increases in alpha-actin and vimentin expression. Simultaneous culture of stromal cells isolated from the original tumour failed to show the same morphological characteristics or protein expression patterns. We further characterised CHEC cells through a screening of cancer related proteins, among others, caveolin-1 and Tissue factor in comparison with established cancer cell lines and corresponding non-cancerous cells. This report demonstrates that endometrial adenocarcinoma cells in culture can undergo phenotypic and protein expression changes reminiscent of epithelial-mesenchymal transition. This work suggests that primary tumours and cell lines displaying stromal morphologies may have undergone epithelial-mesenchymal transition from an adenocarcinoma origin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号