首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21938篇
  免费   1500篇
  国内免费   9篇
  23447篇
  2024年   19篇
  2023年   126篇
  2022年   311篇
  2021年   580篇
  2020年   351篇
  2019年   471篇
  2018年   594篇
  2017年   478篇
  2016年   809篇
  2015年   1215篇
  2014年   1343篇
  2013年   1659篇
  2012年   1951篇
  2011年   1893篇
  2010年   1175篇
  2009年   1016篇
  2008年   1377篇
  2007年   1289篇
  2006年   1179篇
  2005年   1081篇
  2004年   981篇
  2003年   927篇
  2002年   752篇
  2001年   118篇
  2000年   107篇
  1999年   135篇
  1998年   126篇
  1997年   115篇
  1996年   89篇
  1995年   86篇
  1994年   90篇
  1993年   88篇
  1992年   53篇
  1991年   56篇
  1990年   62篇
  1989年   45篇
  1988年   50篇
  1987年   38篇
  1986年   42篇
  1985年   51篇
  1984年   39篇
  1983年   44篇
  1982年   32篇
  1981年   42篇
  1980年   26篇
  1979年   35篇
  1978年   32篇
  1977年   29篇
  1976年   25篇
  1975年   22篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
962.
963.
964.
We previously reported that prolactin (PRL) induces chitotriosidase (CHIT‐1) mRNA expression in human macrophages. In this investigation we determined the signaling pathways involved in CHIT‐1 induction in response to PRL. The CHIT‐1 induction PRL‐mediated was reduced by wortmannin and LY‐294002, inhibitors of phosphatidylinositol 3‐kinase (PI3‐K) and by genistein an inhibitor of protein tyrosine kinase (PTK). Pre‐treatment of macrophages with SB203580, a specific inhibitor of the mitogen‐activated kinases (MAPK) p38, or with U0126, an inhibitor of MAPK p44/42, prevented both basal and exogenous PRL‐mediated CHIT‐1 expression. No significant effects on CHIT‐1 induction PRL‐mediated were observed with a protein kinase C inhibitor (PKC), rottlerin, or with an Src inhibitor, PP2, or with JAK2 inhibitor, AG490. In addition, PRL induced a phosphorylation of AKT that was prevented both by the two MAPK inhibitors SB203580 and U0126 and by the PI3‐K inhibitors wortmannin and LY‐294002. In conclusion, our results indicate that PRL up‐regulated CHIT‐1 expression via PTK, PI3‐K, MAPK, and signaling transduction components. J. Cell. Biochem. 107: 881–889, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
965.
Most hosts are concurrently or sequentially infected with multiple parasites; thus, fully understanding interactions between individual parasite species and their hosts depends on accurate characterization of the parasite community. For parasitic nematodes, noninvasive methods for obtaining quantitative, species‐specific infection data in wildlife are often unreliable. Consequently, characterization of gastrointestinal nematode communities of wild hosts has largely relied on lethal sampling to isolate and enumerate adult worms directly from the tissues of dead hosts. The necessity of lethal sampling severely restricts the host species that can be studied, the adequacy of sample sizes to assess diversity, the geographic scope of collections and the research questions that can be addressed. Focusing on gastrointestinal nematodes of wild African buffalo, we evaluated whether accurate characterization of nematode communities could be made using a noninvasive technique that combined conventional parasitological approaches with molecular barcoding. To establish the reliability of this new method, we compared estimates of gastrointestinal nematode abundance, prevalence, richness and community composition derived from lethal sampling with estimates derived from our noninvasive approach. Our noninvasive technique accurately estimated total and species‐specific worm abundances, as well as worm prevalence and community composition when compared to the lethal sampling method. Importantly, the rate of parasite species discovery was similar for both methods, and only a modest number of barcoded larvae (n = 10) were needed to capture key aspects of parasite community composition. Overall, this new noninvasive strategy offers numerous advantages over lethal sampling methods for studying nematode–host interactions in wildlife and can readily be applied to a range of study systems.  相似文献   
966.
967.
968.
969.
Metastasis formation is the major reason for the extremely poor prognosis in small cell lung cancer (SCLC) patients. The molecular interaction partners regulating metastasis formation in SCLC are largely unidentified, however, from other tumor entities it is known that tumor cells use the adhesion molecules of the leukocyte adhesion cascade to attach to the endothelium at the site of the future metastasis. Using the human OH-1 SCLC line as a model, we found that these cells expressed E- and P-selectin binding sites, which could be in part attributed to the selectin binding carbohydrate motif sialyl Lewis A. In addition, protein backbones known to carry these glycotopes in other cell lines including PSGL-1, CD44 and CEA could be detected in in vitro and in vivo grown OH1 SCLC cells. By intravital microscopy of murine mesenterial vasculature we could capture SCLC cells while rolling along vessel walls demonstrating that SCLC cells mimic leukocyte rolling behavior in terms of selectin and selectin ligand interaction in vivo indicating that this mechanism might indeed be important for SCLC cells to seed distant metastases. Accordingly, formation of spontaneous distant metastases was reduced by 50% when OH-1 cells were xenografted into E-/P-selectin-deficient mice compared with wild type mice (p = 0.0181). However, as metastasis formation was not completely abrogated in selectin deficient mice, we concluded that this adhesion cascade is redundant and that other molecules of this cascade mediate metastasis formation as well. Using several of these adhesion molecules as interaction partners presumably make SCLC cells so highly metastatic.  相似文献   
970.
The vasculature of each organ expresses distinct molecular signatures critically influenced by the pathological status. The heterogeneous profile of the vascular beds has been successfully unveiled by the in vivo phage display, a high-throughput tool for mapping normal, diseased, and tumor vasculature. Specific challenges of this growing field are targeted therapies against cancer and cardiovascular diseases, as well as novel bioimaging diagnostic tools. Tumor vasculature-homing peptides have been extensively evaluated in several preclinical and clinical studies both as targeted-therapy and diagnosis. To date, results from several Phase I and II trials have been reported and many other trials are currently ongoing or recruiting patients. In this review, advances in the identification of novel peptide ligands and their corresponding receptors on tumor endothelium through the in vivo phage display technology are discussed. Emphasis is given to recent findings in the clinical setting of vascular-homing peptides selected by in vivo phage display for the treatment of advanced malignancies and their altered vascular beds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号