首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   14篇
  国内免费   1篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   10篇
  2014年   5篇
  2013年   5篇
  2012年   10篇
  2011年   6篇
  2010年   7篇
  2009年   3篇
  2008年   9篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2004年   4篇
  2002年   8篇
  2001年   1篇
  2000年   5篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1986年   4篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1979年   3篇
  1977年   1篇
  1976年   3篇
  1973年   2篇
  1972年   1篇
  1968年   1篇
  1967年   4篇
  1966年   4篇
  1965年   2篇
排序方式: 共有154条查询结果,搜索用时 31 毫秒
71.
72.
The Amazon basin harbors a diverse ecological community that has a critical role in the maintenance of the biosphere. Although plant and animal communities have received much attention, basic information is lacking for fungal or prokaryotic communities. This is despite the fact that recent ecological studies have suggested a prominent role for interactions with soil fungi in structuring the diversity and abundance of tropical rainforest trees. In this study, we characterize soil fungal communities across three major tropical forest types in the western Amazon basin (terra firme, seasonally flooded and white sand) using 454 pyrosequencing. Using these data, we examine the relationship between fungal diversity and tree species richness, and between fungal community composition and tree species composition, soil environment and spatial proximity. We find that the fungal community in these ecosystems is diverse, with high degrees of spatial variability related to forest type. We also find strong correlations between α- and β-diversity of soil fungi and trees. Both fungal and plant community β-diversity were also correlated with differences in environmental conditions. The correlation between plant and fungal richness was stronger in fungal lineages known for biotrophic strategies (for example, pathogens, mycorrhizas) compared with a lineage known primarily for saprotrophy (yeasts), suggesting that this coupling is, at least in part, due to direct plant–fungal interactions. These data provide a much-needed look at an understudied dimension of the biota in an important ecosystem and supports the hypothesis that fungal communities are involved in the regulation of tropical tree diversity.  相似文献   
73.
VP23 is a key component of the triplex structure. The triplex, which is unique to herpesviruses, is a complex of three proteins, two molecules of VP23 which interact with a single molecule of VP19C. This structure is important for shell accretion and stability of the protein coat. Previous studies utilized a random transposition mutagenesis approach to identify functional domains of the triplex proteins. In this study, we expand on those findings to determine the key amino acids of VP23 that are required for triplex formation. Using alanine-scanning mutagenesis, we have made mutations in 79 of 318 residues of the VP23 polypeptide. These mutations were screened for function both in the yeast two-hybrid assay for interaction with VP19C and in a genetic complementation assay for the ability to support the replication of a VP23 null mutant virus. These assays identified a number of amino acids that, when altered, abolish VP23 function. Abrogation of virus assembly by a single-amino-acid change bodes well for future development of small-molecule inhibitors of this process. In addition, a number of mutations which localized to a C-terminal region of VP23 (amino acids 205 to 241) were still able to interact with VP19C but were lethal for virus replication when introduced into the herpes simplex virus 1 (HSV-1) KOS genome. The phenotype of many of these mutant viruses was the accumulation of large open capsid shells. This is the first demonstration of capsid shell accumulation in the presence of a lethal VP23 mutation. These data thus identify a new domain of VP23 that is required for or regulates capsid shell closure during virus assembly.  相似文献   
74.
75.
The control program of codling moth (Cydia pomonella L.) in the Río Negro and Neuquén Valley is intended to neonate larvae. However, adults may be subjected to sublethal pesticide concentrations generating stress which might enhance both mutation rates and activity of the detoxification system. This study assessed the exposure effects of chlorpyrifos on target enzyme and, both detoxifying and antioxidant systems of surviving adults from both a laboratory susceptible strain (LSS) and a field population (FP). The results showed that the FP was as susceptible to chlorpyrifos as the LSS and, both exhibited a similar chlorpyrifos‐inhibitory concentration 50 (IC50) of acetylcholinesterase (AChE). The FP displayed higher carboxylesterase (CarE) and 7‐ethoxycoumarine O‐deethylase (ECOD) activities than LSS. Both LSS and FP showed an increase on CarE activity after the exposure to low‐chlorpyrifos concentrations, followed by enzyme inhibition at higher concentrations. There were no significant differences neither in the activities of glutathione S‐transferases (GST), catalase (CAT) and superoxide dismutase (SOD) nor in the reduced glutathione (GSH) content between LSS and FP. Moreover, these enzymes were unaffected by chlorpyrifos. In conclusion, control adults from the FP exhibited higher CarE and ECOD activities than control adults from the LSS. AChE and CarE activities were the most affected by chlorpyrifos. Control strategies used for C. pomonella, such as rotations of insecticides with different modes of action, will probably delay the evolution of insecticide resistance in FPs from the study area.  相似文献   
76.
High plasma homocysteine concentrations have been found to be associated with atherosclerosis and thrombosis of arteries and deep veins. The oxidative damage mediated by hydrogen peroxide production during the metal-catalyzed oxidation of homocysteine is to date considered to be one of the major pathophysiological mechanisms for this association.

In this work, a very sensitive and accurate method was employed to measure the effective production of H2O2 during homocysteine oxidation. Furthermore, the interaction of homocysteine with powerful oxidizing species (hypochlorite, peroxynitrite, ferrylmyoglobin) was evaluated in order to ascertain the putative pro-oxidant role of homocysteine.

Our findings indicate that homocysteine does not produce H2O2 in a significant amount (1/4000 mole/mole ratio of H2O2 to homocysteine). Moreover, homocysteine strongly inhibits the oxidation of luminol and dihydrorhodamine by hypochlorite or peroxynitrite and rapidly reduces back ferrylmyoglobin, the oxidizing species, to metmyoglobin.

All these results should, in our opinion, lead to a rethinking of the commonly held view that homocysteine oxidation is one of the main causative mechanisms of cardiovascular damage.  相似文献   
77.
We studied the effect of two insecticides azinphos methyl and carbaryl on two resident aquatic species (Oncorhynchus mykiss and Bufo arenarum). Juvenile trout and larval stages of toad were used for exposure and recovery assays. O. mykiss was more sensitive to azinphos methyl exposure than B. arenarum larvae, with a mean 96-h LC50 of 0.007 mg/l. Carbaryl is markedly less toxic than the organophosphate and the differences in potency, expressed as LC50, for both species varies only by five-fold. The relationship between cholinesterase (ChE) inhibition and lethality is not straightforward: O. mykiss survives with an almost complete inhibition of the brain enzyme when exposed to azinphos methyl and carbaryl. Their IC50 values are one or two orders of magnitude lower than the corresponding 96-h LC50 value. In B. arenarum larvae, the IC50 values for azinphos methyl and carbaryl are one half and one third of their 96-h LC50s, respectively. The time courses of enzyme inhibition and recovery also points out differences between both types of pesticides and species. Identifying the key features conferring species selectivity can be exploited to minimize the incidence and severity of intoxication of non-target organism. The data presented here highlight the necessity of including several species and endpoint analyses in the pesticide risk evaluations of aquatic ecosystems.  相似文献   
78.
79.
Asthma is a multifactorial disease influenced by genetic and environmental factors. In the past decade, several loci and >100 genes have been found to be associated with the disease in at least one population. Among these loci, region 12q13-24 has been implicated in asthma etiology in multiple populations, suggesting that it harbors one or more asthma susceptibility genes. We performed linkage and association analyses by transmission/disequilibrium test and case-control analysis in the candidate region 12q13-24, using the Sardinian founder population, in which limited heterogeneity of pathogenetic alleles for monogenic and complex disorders as well as of environmental conditions should facilitate the study of multifactorial traits. We analyzed our cohort, using a cutoff age of 13 years at asthma onset, and detected significant linkage to a portion of 12q13-24. We identified IRAK-M as the gene contributing to the linkage and showed that it is associated with early-onset persistent asthma. We defined protective and predisposing SNP haplotypes and replicated associations in an outbred Italian population. Sequence analysis in patients found mutations, including inactivating lesions, in the IRAK-M coding region. Immunohistochemistry of lung biopsies showed that IRAK-M is highly expressed in epithelial cells. We report that IRAK-M is involved in the pathogenesis of early-onset persistent asthma. IRAK-M, a negative regulator of the Toll-like receptor/IL-1R pathways, is a master regulator of NF-κB and inflammation. Our data suggest a mechanistic link between hyperactivation of the innate immune system and chronic airway inflammation and indicate IRAK-M as a potential target for therapeutic intervention against asthma.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号