首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   7篇
  2022年   1篇
  2021年   2篇
  2014年   7篇
  2013年   3篇
  2012年   7篇
  2011年   6篇
  2010年   5篇
  2009年   4篇
  2008年   7篇
  2007年   10篇
  2006年   2篇
  2005年   1篇
  2004年   5篇
  2003年   3篇
  2002年   5篇
  2001年   6篇
  2000年   4篇
  1999年   7篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1991年   1篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   4篇
  1980年   2篇
  1979年   4篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有118条查询结果,搜索用时 15 毫秒
81.
To determine the significance of actin isoforms in chemomechanical coupling, we compared tension and ATPase rate in heart myofilaments from nontransgenic (NTG) and transgenic (TG) mice in which enteric gamma-actin replaced >95% of the cardiac alpha-actin. Enteric gamma-actin was expressed against three backgrounds: mice expressing cardiac alpha-actin, heterozygous null cardiac alpha-actin mice, and homozygous null cardiac alpha-actin mice. There were no differences in maximum Ca(2+) activated tension or maximum rate of tension redevelopment after a quick release and rapid restretch protocol between TG and NTG skinned fiber bundles. However, compared with NTG controls, Ca(2+) sensitivity of tension was significantly decreased and economy of tension development was significantly increased in myofilaments from all TG hearts. Shifts in myosin isoform population could not fully account for this increase in the economy of force production of TG myofilaments. Our results indicate that an exchange of cardiac alpha-actin with an actin isoform differing in only five amino acids has a significant impact on both Ca(2+) regulation of cardiac myofilaments and the cross-bridge cycling rate.  相似文献   
82.
Tropomyosin (TM), an integral component of the thin filament, is encoded by three striated muscle isoforms: alpha-TM, beta-TM, and TPM 3. Although the alpha-TM and beta-TM isoforms are well characterized, less is known about the function of the TPM 3 isoform, which is predominantly found in the slow-twitch musculature of mammals. To determine its functional significance, we ectopically expressed this isoform in the hearts of transgenic mice. We generated six transgenic mouse lines that produce varying levels of TPM 3 message with ectopic TPM 3 protein accounting for 40-60% of the total striated muscle tropomyosin. The transgenic mice have normal life spans and exhibit no morphological abnormalities in their sarcomeres or hearts. However, there are significant functional alterations in cardiac performance. Physiological assessment of these mice by using closed-chest analyses and a work-performing model reveals a hyperdynamic effect on systolic and diastolic function. Analysis of detergent-extracted fiber bundles demonstrates a decreased sensitivity to Ca(2+) in force generation and a decrease in length-dependent Ca(2+) activation with no detectable change in interfilament spacing as determined by using X-ray diffraction. Our data are the first to demonstrate that TM isoforms can affect sarcomeric performance by decreasing sensitivity to Ca(2+) and influencing the length-dependent Ca(2+) activation.  相似文献   
83.
84.
UD-CG 212 Cl, (Fig. 1: 4,5-dihydro-6-[2-(4-hydroxyphenyl)-1H-benzimidazole-5-yl]-5-methyl-3(2H)-pyrid azinone), is the primary metabolite of the positive inotropic agent pimobendan (UDCG 115 BS, Acardi®). Our previous studies [16] showed in detergent extracted preparations of canine ventricular muscle that sub-nanomolar concentrations of UD-CG 212 Cl increased submaximal myofilament force, but only when the activation state had been altered by relatively high (5-10 mM) concentrations of inorganic phosphate (Pi) or relatively low (20 µM) concentrations of MgATP. In the present study, we investigated the effects of UD-CG 212 Cl on the pCa-force relationship of detergent extracted bundles of human cardiac fibers before and after addition of Pi. As expected, treatment with 5 mM Pi depressed maximal force at pCa 4.5 by 27.0 ± 0.4% (mean ± SEM). Force generated at the half-maximally activating Ca2+ concentration (pCa50) of control fibers (5.98 ± 0.2) was significantly (p < .05) reduced following the addition of 5 mM Pi (pCa50 = 5.69 ± 0.3). The addition of UD-CG 212 Cl over a range of concentrations (10--11>-10--6 M) had no effect on Ca2+-sensitivity under control conditions, but in the presence of 5 mM Pi, there was a 23.1 ± 0.1% increase in the percent maximal force at pCa5.9. Ca2+-sensitivity was also significantly increased in the presence of Pi and 10-8 M UD-CG 212 Cl (pCa50 = 5.74 ± 0.3, p < .05). We conclude that UD-CG 212 Cl potentially increases sub-maximal force of human ventricular myofilaments with an inotropic action depending on a state of myofilament activation associated with ischemic conditions.  相似文献   
85.
In previous work, we (El-Saleh, S., Theiret, R., Johnson, P., and Potter, J. D. (1984) J. Biol. Chem. 259, 11014-11021) presented evidence that Ca2+ activation of skeletal myofilaments depends on a specific actin domain. We showed that rabbit skeletal thin filaments reconstituted with actin modified at Lys-237 activate heavy meromyosin X Mg2+-ATPase activity independently of the Ca2+ ion concentration. The modification, which apparently blocks the inhibitory effects of troponin-tropomyosin (Tn X Tm), on acto-heavy meromyosin X Mg2+-ATPase activity, consisted of conversion of Lys-237 to an enamine by reaction of purified actin with 2,4-pentanedione (PD). In experiments reported here, we have treated myofibrils with PD with the idea of altering actin in its native state within the myofilament lattice. Preparations of native and Tn X Tm free ("desensitized") myofibrils were incubated with PD (100 mol/mol of actin lysine) under rigorous conditions (10 mM 4-morpholinepropanesulfonic acid, pH 7.0, 2.0 nM [ethylenebis(oxyethylenenitrilo)]tetraacetic acid, 0.4 mM dithiothreitol, and 0.15 mM NaN3). Actin isolated from PD X myofibrils contained 0.5 mol of enamine/mol. In the presence of Ca2+, the Mg2+-ATPase activity of PD-treated myofibrils was 110-120% of the maximum Ca2+-stimulated Mg2+-ATPase activity of untreated control myofibrils. In low free Ca2+ (pCa greater than 8), the Mg2+-ATPase activity of the PD-treated myofibrils was not suppressed and remained at 100-106% of the maximum activity of the control myofibrils. Ca2+ sensitivity of the PD-treated myofibrils was restored following treatment with hydroxylamine, which hydrolyzes enamine's products. Preparations of desensitized myofibrils reconstituted with PD-modified or unmodified Tn X Tm demonstrated the same Ca2+-sensitive ATPase activities. On the other hand, preparations reconstituted with unmodified or PD-modified Tn X Tm and PD-modified desensitized myofibrils were insensitive to Ca2+ ion concentration. The Mg2+-ATPase activity of preparations of myosin treated with PD was not activated by modified or unmodified actin. Our results indicate that is is possible to produce an active state(s) of the myofibrils in the absence and presence of Ca2+ by specific alteration of the actin X Tm interaction following modification of myofibrillar actin most likely at Lys-237.  相似文献   
86.
Phosphorylation of myofibrillar and sacroplasmic-reticulum (SR) proteins was studied in Langendorff-perfused rabbit hearts subjected to various inotropic interventions. Stimulation of hearts with isoprenaline resulted in the phosphorylation of both troponin I (TnI) and C-protein in myofibrils and phospholamban in SR. Phosphorylation of phospholamban could be reversed by a 15 min perfusion with drug-free buffer, after a 1 minute pulse perfusion with isoprenaline, at which time the mechanical effects of isoprenaline stimulation had also been reversed. However, both TnI and C-protein remained phosphorylated at this time. Moreover, the inhibition of Ca2+ activation of the Mg2+-dependent ATPase (Mg-ATPase) activity associated with myofibrillar phosphorylation persisted in myofibrils prepared from hearts frozen after 15 min of washout of isoprenaline. To assess the contribution of C-protein phosphorylation in the decrease of Ca2+ activation of the myofibrillar Mg-ATPase activity, we reconstituted a regulated actomyosin system in which only C-protein was phosphorylated. In this system, C-protein phosphorylation did not contribute to the decrease in Ca2+ activation of Mg-ATPase activity, indicating that TnI phosphorylation is responsible for the diminished sensitivity of the myofibrils to Ca2+. These observations support the hypothesis that phospholamban phosphorylation plays a more dominant role than TnI or C-protein phosphorylation in the mechanical response of the mammalian heart to beta-adrenergic stimulation.  相似文献   
87.
Phosphorylation of phospholipids was studied in Langendorff perfused guinea pig hearts subjected to beta-adrenergic stimulation. Hearts were perfused with Krebs-Henseleit buffer containing [32P]Pi and freeze-clamped in a control condition or at the peak of the inotropic response to isoprenaline. 32P incorporation into total phospholipids, individual phospholipids and polyphosphoinositides was analysed in whole tissue homogenates and membranes, enriched in sarcoplasmic reticulum, prepared from the same hearts. Isoprenaline stimulation of the hearts did not result in any significant changes in the levels of phosphate incorporation in the total phospholipid present in cardiac homogenates (11.6 +/- 0.4 nmol of 32P/g for control hearts and 12.4 +/- 0.5 nmol of 32P/g for isoprenaline-treated hearts; n = 6), although there was a significant increase in the degree of phospholipid phosphorylation in sarcoplasmic reticulum (3.5 +/- 0.3 nmol of 32P/mg for control hearts and 6.7 +/- 0.2 nmol of 32P/mg for isoprenaline-treated hearts; n = 6). Analysis of 32P incorporation into individual phospholipids and polyphosphoinositides revealed that isoprenaline stimulation of the hearts was associated with a 2-3-fold increase in the degree of phosphorylation of phosphatidylinositol monophosphate and bisphosphate as well as phosphatidic acid in both cardiac homogenates and sarcoplasmic reticulum membranes. In addition, there was increased phosphate incorporation into phosphatidylinositol in sarcoplasmic reticulum membranes. Thus, perfusion of guinea pig hearts with isoprenaline is associated with increased formation of polyphosphoinositides and these phospholipids may be involved, at least in part, in mediating the effects of beta-adrenergic agents in the mammalian heart.  相似文献   
88.
1. On treatment of the perfused rabbit heart with adrenaline, the total covalently bound phosphate of troponin I increased from 1.14 mol of phosphate/mol to 1.86 mol of phosphate/mol. 2. Covalently bound phosphate could be identified only in the region of the molecule of cardiac troponin I consisting of residues 1--48. 3. When 32P-labelled orthophosphate was present in the perfusion medium the phosphate at serine-20 became radioactively labelled. This residue was the only significant site of phosphorylation that could be identified. 4. The addition of adrenaline caused a 4--5-fold increase in covalently bound [32P]phosphate. Virtually all of the 32P was located at serine-20. 5. It was concluded from these studies that the extent of phosphorylation of serine-20 of cardiac troponin I increased from 30--40% in the control perfused heart to about 100% in the presence of adrenaline.  相似文献   
89.
Adrenergic stimulation alters functional dynamics of the heart by mechanisms most likely involving cyclic AMP (cAMP)-dependent protein phosphorylation. In vitro studies indicate that the myofibrils and sarcoplasmic reticulum (SR) may act as effectors of the adrenergic stimulation. cAMP-dependent phosphorylation of troponin I (TnI), one of the regulatory proteins of cardiac myofibrils, results in a decreased steady-state affinity of troponin C (TnC) for calcium, an increase in the off-rate for Ca2+ exchange with TnC, and a rightward shift of the relation between free Ca2+ and myofibrillar force or ATPase. Phosphorylation of phospholamban, a regulatory protein of cardiac SR, results in an increased velocity of Ca2+ transport by SR vesicles, an increased affinity of the transport protein for Ca2+, and an increased turnover of elementary steps of the ATPase reaction. These in vitro findings support the hypothesis that the inotropic response of the heart to catecholamine stimulation involves phosphorylation of TnI and phospholamban. Our in vivo studies with perfused rabbit hearts show that during the peak of the inotropic response to isoproterenol there is a simultaneous phosphorylation of TnI and an 11,000-dalton protein in the SR, most likely the monomeric form of phospholamban.  相似文献   
90.
E-1020 is a cardiotonic agent that acts as a cyclic-AMP phosphodiesterase inhibitor but also may have actions which alter myofilament response to Ca2+. To identify direct actions of E-1020 on cardiac contractile proteins, effects of E-1020 on myofibrillar Ca2+ dependent MgATPase and force generation in chemically skinned fiber bundles were measured. In bovine cardiac myofibrils, E-1020 (100 M) significantly increased myofilament Ca2+ sensitivity and Ca2+-dependent ATPase activity at submaximal pCa values. At pCa 6.75, E-1020 significantly increased ATPase activity in bovine (10–100 pM) and canine (1–100 pM) cardiac myofibrils but had no effect on rat cardiac myofibrils. Moreover, in one population of canine ventricular fiber bundles, E-1020 (0.0–10 M) significantly increased isometric tension at pCa 6.5 and 6.0, whereas in another population of bundles E-1020 had no effect on tension. In no case was resting (pCa 8.0) or maximal tension (pCa 4.5) increased by E-1020. Measurements of Ca2+ binding to canine ventricular skinned fiber preparations demonstrated that E-1020 does not alter the affinity of myofilament troponin C for Ca2+. We conclude that part of the mechanism by which E-1020 acts as an inotropic agent may involve alterations in the responsiveness of contractile proteins to Ca2+. The lack of effect of E-1020 on some preparations may be dependent on isoform populations of myofilament proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号