首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   7篇
  2022年   1篇
  2021年   2篇
  2014年   7篇
  2013年   3篇
  2012年   7篇
  2011年   6篇
  2010年   5篇
  2009年   4篇
  2008年   7篇
  2007年   10篇
  2006年   2篇
  2005年   1篇
  2004年   5篇
  2003年   3篇
  2002年   5篇
  2001年   6篇
  2000年   4篇
  1999年   7篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1991年   1篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   4篇
  1980年   2篇
  1979年   4篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有118条查询结果,搜索用时 519 毫秒
51.
52.
Myocardial physiology in the aftermath of myocardial infarction (MI) before remodeling is an under-explored area of investigation. Here, we describe the effects of MI on the cardiac sarcomere with focus on the possible contributions of reactive oxygen species. We surgically induced MI in 6-7-month-old female CD1 mice by ligation of the left anterior descending coronary artery. Data were collected 3-4 days after MI or sham (SH) surgery. MI hearts demonstrated ventricular dilatation and systolic dysfunction upon echo cardiographic analysis. Sub-maximum Ca-activated tension in detergent-extracted fiber bundles from papillary muscles increased significantly in the preparations from MI hearts. Ca(2+) sensitivity increased after MI, whereas cooperativity of activation decreased. To assess myosin enzymatic integrity we measured splitting of Ca-ATP in myofibrillar preparations, which demonstrated a decline in Ca-ATPase activity of myofilament myosin. Biochemical analysis demonstrated post-translational modification of sarcomeric proteins. Phosphorylation of cardiac troponin I and myosin light chain 2 was reduced after MI in papillary samples, as measured using a phospho-specific stain. Tropomyosin was oxidized after MI, forming disulfide products detectable by diagonal non-reducing-reducing SDS-PAGE. Our analysis of myocardial protein oxidation post-MI also demonstrated increased S-glutathionylation. We functionally linked protein oxidation with sarcomere function by treating skinned fibers with the sulfhydryl reducing agent dithiothreitol, which reduced Ca(2+) sensitivity in MI, but not SH, samples. Our data indicate important structural and functional alterations to the cardiac sarcomere after MI, and the contribution of protein oxidation to this process.  相似文献   
53.
p21-activated kinase 1 (Pak1) is a serine/threonine kinase that activates protein phosphatase 2a, resulting in the dephosphorylation of cardiac proteins and increased myofilament Ca(2+) sensitivity. Emerging evidence indirectly indicates a role for Pak1 in ischemia-reperfusion (I/R), but direct evidence is lacking. We hypothesize that activation of the Pak1 signaling pathway is a cardioprotective mechanism that prevents or reverses the detrimental effects of ischemic injury by inducing posttranslational modifications in myofilament proteins that ultimately improve cardiac contractility following ischemic insult. In the present study, we subjected ex vivo hearts from wild-type (WT) and Pak1-knockout (KO) mice to 20 min of global cardiac ischemia followed by 30 min of reperfusion. In the absence of Pak1, there was an exacerbation of the increased end-diastolic pressure and reduced left ventricular developed pressure occurring after I/R injury. ProQ analysis revealed an increase in troponin-T phosphorylation at baseline in Pak1-KO hearts compared with WT. Significantly decreased myosin light chain 2 (MLC2) phosphorylation in Pak1-KO hearts compared with WT after I/R injury was confirmed by Western immunoblotting. These data indicate that Pak1-KO hearts have reduced recovery of myocardial performance after global I/R injury concomitant with changes in troponin-T and MLC2 phosphorylation. Finally, a protein-protein association between Pak1 and MLC2, and Pak1 and troponin-T, was determined by coimmunoprecipitation. Thus, results of our study provide a basis for targeting a novel pathway, including Pak1, in the therapies for patients with ischemic events.  相似文献   
54.

Background

Few studies have systematically addressed the role of epidural analgesia and caesarean delivery in predicting the post-partum disease activity in women with Multiple Sclerosis (MS).The objective of this study was to assess the impact of epidural analgesia (EA) and caesarean delivery (CD) on the risk of post-partum relapses and disability in women with MS.

Methods

In the context of an Italian prospective study on the safety of immunomodulators in pregnancy, we included pregnancies occurred between 2002 and 2008 in women with MS regularly followed-up in 21 Italian MS centers. Data were gathered through a standardized, semi-structured interview, dealing with pregnancy outcomes, breastfeeding, type of delivery (vaginal or caesarean) and EA. The risk of post-partum relapses and disability progression (1 point on the Expanded Disability Status Sclae, EDSS, point, confirmed after six months) was assessed through a logistic multivariate regression analysis.

Results

We collected data on 423 pregnancies in 415 women. Among these, 349 pregnancies resulted in full term deliveries, with a post-partum follow-up of at least one year (mean follow-up period 5.5±3.1 years). One hundred and fifty-five patients (44.4%) underwent CD and 65 (18.5%) EA. In the multivariate analysis neither CD, nor EA were associated with a higher risk of post-partum relapses. Post-partum relapses were related to a higher EDSS score at conception (OR=1.42; 95% CI 1.11-1.82; p=0.005), a higher number of relapses in the year before pregnancy (OR=1.62; 95% CI 1.15-2.29; p=0.006) and during pregnancy (OR=3.07; 95% CI 1.40-6.72; p=0.005). Likewise, CD and EA were not associated with disability progression on the EDSS after delivery. The only significant predictor of disability progression was the occurrence of relapses in the year after delivery (disability progression in the year after delivery: OR= 4.00; 95% CI 2.0-8.2; p<0.001; disability progression over the whole follow-up period: OR= 2.0; 95% CI 1.2-3.3; p=0.005).

Conclusions

Our findings, show no correlation between EA, CD and postpartum relapses and disability. Therefore these procedures can safely be applied in MS patients. On the other hand, post-partum relapses are significantly associated with increased disability, which calls for the need of preventive therapies after delivery.
  相似文献   
55.
56.
57.
Current electrophoretic methods have not been optimized to fully separate post-translationally modified mutant forms of tropomyosin (Tm) from wild-type cardiac samples. We describe here a method employing a modified 2-D PAGE/2-D DIGE protocol, to fully separate native, mutant (E54K), and phosphorylated forms of Tm. Our data demonstrate the first evidence of a significant (approximately 40%) decrease in Tm phosphorylation in transgenic compared to non-transgenic mouse hearts, and indicate that altered phosphorylation may be a significant factor in the linkage of the E54K mutation to dilated cardiomyopathy.  相似文献   
58.
The ability of membrane voltage to activate high conductance, calcium-activated (BK-type) K(+) channels is enhanced by cytosolic calcium (Ca(2+)). Activation is sensitive to a range of [Ca(2+)] that spans over four orders of magnitude. Here, we examine the activation of BK channels resulting from expression of cloned mouse Slo1 alpha subunits at [Ca(2+)] and [Mg(2+)] up to 100 mM. The half-activation voltage (V(0.5)) is steeply dependent on [Ca(2+)] in the micromolar range, but shows a tendency towards saturation over the range of 60-300 microM Ca(2+). As [Ca(2+)] is increased to millimolar levels, the V(0.5) is strongly shifted again to more negative potentials. When channels are activated by 300 microM Ca(2+), further addition of either mM Ca(2+) or mM Mg(2+) produces similar negative shifts in steady-state activation. Millimolar Mg(2+) also produces shifts of similar magnitude in the complete absence of Ca(2+). The ability of millimolar concentrations of divalent cations to shift activation is primarily correlated with a slowing of BK current deactivation. At voltages where millimolar elevations in [Ca(2+)] increase activation rates, addition of 10 mM Mg(2+) to 0 Ca(2+) produces little effect on activation time course, while markedly slowing deactivation. This suggests that Mg(2+) does not participate in Ca(2+)-dependent steps that influence current activation rate. We conclude that millimolar Mg(2+) and Ca(2+) concentrations interact with low affinity, relatively nonselective divalent cation binding sites that are distinct from higher affinity, Ca(2+)-selective binding sites that increase current activation rates. A symmetrical model with four independent higher affinity Ca(2+) binding steps, four voltage sensors, and four independent lower affinity Ca(2+)/Mg(2+) binding steps describes well the behavior of G-V curves over a range of Ca(2+) and Mg(2+). The ability of a broad range of [Ca(2+)] to produce shifts in activation of Slo1 conductance can, therefore, be accounted for by multiple types of divalent cation binding sites.  相似文献   
59.
Activation of protein kinase C (PKC) in heart muscle signals hypertrophy and may also directly affect contractile function. We tested this idea using a transgenic (TG) mouse model in which conditionally expressed PKCbeta was turned on at 10 wk of age and remained on for either 6 or 10 mo. Compared with controls, TG cardiac myocytes demonstrated an increase in the peak amplitude of the Ca(2+) transient, an increase in the extent and rate of shortening, and an increase in the rate of relengthening at both 6 and 10 mo of age. Phospholamban phosphorylation and Ca(2+)-uptake rates of sarcoplasmic reticulum vesicles were the same in TG and control heart preparations. At 10 mo, TG skinned fiber bundles demonstrated the same sensitivity to Ca(2+) as controls, but maximum tension was depressed and there was increased myofilament protein phosphorylation. Our results differ from studies in which PKCbeta was constitutively overexpressed in the heart and in studies that reported a depression of myocyte contraction with no change in the Ca(2+) transient.  相似文献   
60.
We studied Ca(2+) dependence of tension and actomyosin ATPase rate in detergent extracted fiber bundles isolated from transgenic mice (TG), in which cardiac troponin I (cTnI) serines 43 and 45 were mutated to alanines (cTnI S43A/S45A). Basal phosphorylation levels of cTnI were lower in TG than in wild-type (WT) mice, but phosphorylation of cardiac troponin T was increased. Compared with WT, TG fiber bundles showed a 13% decrease in maximum tension and a 20% increase in maximum MgATPase activity, yielding an increase in tension cost. Protein kinase C (PKC) activation with endothelin (ET) or phenylephrine plus propranolol (PP) before detergent extraction induced a decrease in maximum tension and MgATPase activity in WT fibers, whereas ET or PP increased maximum tension and stiffness in TG fibers. TG MgATPase activity was unchanged by ET but increased by PP. Measurement of protein phosphorylation revealed differential effects of agonists between WT and TG myofilaments and within the TG myofilaments. Our results demonstrate the importance of PKC-mediated phosphorylation of cTnI S43/S45 in the control of myofilament activation and cross-bridge cycling rate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号