首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   7篇
  118篇
  2022年   1篇
  2021年   2篇
  2014年   7篇
  2013年   3篇
  2012年   7篇
  2011年   6篇
  2010年   5篇
  2009年   4篇
  2008年   7篇
  2007年   10篇
  2006年   2篇
  2005年   1篇
  2004年   5篇
  2003年   3篇
  2002年   5篇
  2001年   6篇
  2000年   4篇
  1999年   7篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1991年   1篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   4篇
  1980年   2篇
  1979年   4篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有118条查询结果,搜索用时 15 毫秒
101.
This article documents the addition of 171 microsatellite marker loci and 27 pairs of single nucleotide polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Bombus pauloensis, Cephalorhynchus heavisidii, Cercospora sojina, Harpyhaliaetus coronatus, Hordeum vulgare, Lachnolaimus maximus, Oceanodroma monteiroi, Puccinia striiformis f. sp. tritici, Rhea americana, Salmo salar, Salmo trutta, Schistocephalus solidus, Sousa plumbea and Tursiops aduncus. These loci were cross-tested on the following species: Aquila heliaca, Bulweria bulwerii, Buteo buteo, Buteo swainsoni, Falco rusticolus, Haliaeetus albicilla, Halobaena caerulea, Hieraaetus fasciatus, Oceanodroma castro, Puccinia graminis f. sp. Tritici, Puccinia triticina, Rhea pennata and Schistocephalus pungitii. This article also documents the addition of 27 sequencing primer pairs for Puffinus baroli and Bulweria bulwerii and cross-testing of these loci in Oceanodroma castro, Pelagodroma marina, Pelecanoides georgicus, Pelecanoides urinatrix, Thalassarche chrysostoma and Thalassarche melanophrys.  相似文献   
102.
Striated muscle tropomyosin (TM) plays an essential role in sarcomeric contraction and relaxation through its regulated movement on the thin filament. Previous work in our laboratory established that alpha- and beta-TM isoforms elicit physiological differences in sarcomeric performance. To address the significance of isoform-specific troponin T binding regions in TM, in this present work we replaced alpha-TM amino acids 175-190 and 258-284 with the beta-TM regions and expressed this chimeric protein in the hearts of transgenic mice. Hearts that express this chimeric protein exhibit significant decreases in rates of contraction and relaxation when assessed by ex vivo work-performing cardiac analyses. There are increases in time to peak pressure and in half-time to relaxation. These hearts respond appropriately to beta-adrenergic stimulation but do not attain control rates of contraction or relaxation. With increased expression of the transgene, 70% of the mice die by 5 mo of age without exhibiting gross pathological changes in the heart. Myofilaments from these mice have no differences in Ca(2+) sensitivity of percent maximum force, but there is a decrease in maximum tension development. Our data are the first to demonstrate that the troponin T binding regions of specific TM isoforms can alter sarcomeric performance without changing the Ca(2+) sensitivity of the myofilaments.  相似文献   
103.
Neonatal hearts respond to stress and function in an environment quite different from adult hearts. There is evidence that these functional differences not only reflect modifications in the abundance and isoforms of sarcomeric proteins but also in the modulation of sarcomeric protein phosphorylation. Yet our understanding of changes in sarcomeric protein phosphorylation in development is incomplete. In the experiments reported here, we first quantified the intact sarcomeric protein phosphorylation status between neonatal and adult rat hearts by employing comparative two-dimensional (2-D) gel electrophoresis in conjunction with phosphoprotein-specific staining. Subsequently, we measured phosphorylation changes at the peptide level by employing high-resolution linear ion trap-Fourier transform (LTQ-FT) mass spectrometry analysis of titanium dioxide-enriched phosphopeptides differentially labeled with (16)O/(18)O during in-gel digestion. We also employed Western blot analysis using phosphorylation site-specific antibodies to measure phosphorylation changes. Our data demonstrated the novel finding that phosphorylation levels of myosin-binding protein C (MyBP-C) at Ser(295) and Ser(315) as well as tropomyosin at Ser(283) increased, whereas phosphorylation levels of MyBP-C at Ser(320) and myosin light chain 2 at Ser(15) decreased in neonatal hearts compared with the same sites in adult hearts. Although our data highlight the significant challenges in understanding relations between protein phosphorylation and cardiac function, they do support the hypothesis that developmental changes in the modulation of protein are functionally significant and correlate with the prevailing physiological state.  相似文献   
104.
Dong WJ  Xing J  Chandra M  Solaro J  Cheung HC 《Proteins》2000,41(4):438-447
The global conformation of cardiac muscle troponin I (cTnI) was investigated with single-cysteine mutants by using a combination of sulfhydryl reactivity and fluorescence resonance energy transfer (FRET) to determine cysteine accessibility and intersite distances. The reactivity was determined with a fluorescent reagent for its reaction with cysteine residues singly located at positions 5, 40, 81, 98, 115, 133, 150, 167, and 192. FRET measurements were made by using the endogenous single Trp-192 as the energy donor and an acceptor probe covalently attached to the cysteines as energy acceptor. The results suggest an open and extended conformation of cTnI with a large curvature in which the cysteines are highly exposed to the solvent. These conformational features are largely retained in the segment between residues 40 and 192 upon phosphorylation at Ser-23 and Ser-24. The sulfhydryl groups of the Cys-133 and Cys-150 of the cTnI incorporated into the binary cTnC-cTnI and fully reconstituted troponin complexes experience large reduced exposure resulting from the binding of Ca(2+) to the regulatory site of cTnC, suggesting that key regions of cTnI involved in activation become highly shielded upon activation. In the cTnC-cTnI complex, every intramolecular distance in the cTnI is lengthened and the overall conformation of the bound cTnI remains elongated with reduced exposure for the cysteines. The global conformation of the troponin C-troponin I complex from cardiac muscle has an elongated shape with constrained flexibility. The highly flexible nature of the N-terminal extension of cTnI is preserved in the complex, suggesting that this segment of cTnI is either not bound or only loosely bound to the C-domain of cTnC.  相似文献   
105.
Striated muscle tropomyosin (TM) interacts with actin and the troponin complex to regulate calcium-mediated muscle contraction. Previous work by our laboratory established that alpha- and beta-TM isoforms elicit physiological differences in sarcomeric performance. Heart myofilaments containing beta-TM exhibit an increased sensitivity to calcium that is associated with a decrease in the rate of relaxation and a prolonged time of relaxation. To address whether the carboxyl-terminal, troponin T binding domain of beta-TM is responsible for these physiological alterations, we exchanged the 27 terminal amino acids of alpha-TM (amino acids 258 -284) for the corresponding region in beta-TM. Hearts of transgenic mice that express this chimeric TM protein exhibit significant decreases in their rates of contraction and relaxation when assessed by ex vivo work-performing cardiac analyses. There are increases in the time to peak pressure and a dramatic increase in end diastolic pressure. In myofilaments, this chimeric protein induces depression of maximum tension and ATPase rate, together with a significant decrease in sensitivity to calcium. Our data are the first to demonstrate that the TM isoform-specific carboxyl terminus is a critical determinant of sarcomere performance and calcium sensitivity in both the whole heart and in isolated myofilaments.  相似文献   
106.
Cardiac failure is one of the leading causes of mortality in developed countries. As life expectancies of the populations of these countries grow, the number of patients suffering from cardiac insufficiency also increases. Effective treatments are being sought and recently a new class of drugs, the calcium sensitisers, was developed. These drugs cause a positive inotropic effect on cardio-myocytes by interacting directly with the contractile apparatus. Their mechanism of action is not accompanied by an increase in intracellular calcium concentration at therapeutic doses, as seen for the older generation of positive inotropic drugs, and thus does not induce calcium-related deleterious effects such as arrhythmias or apoptosis. Levosimendan is a novel calcium sensitiser which has been discovered by using cardiac troponin C (cTnC) as target protein. This drug has been proved to be a well-tolerated and effective treatment for patients with severe decompensated heart failure. This review describes the basic principles of muscle contraction, the main components of the contractile apparatus and their roles in the heart contraction. The regulatory proteins troponin C (cTnC), troponin I (cTnI), troponin T (cTnT), and tropomyosin (Tm) and their interactions are discussed in details. The concept of calcium sensitisation is thereafter explained and a few examples of calcium sensitisers and their putative mechanisms are discussed. Finally, the binding of levosimendan to cTnC and its mechanism of action are described and the results discussed under the light of the action of this drug in vitro and in vivo.  相似文献   
107.
There is evidence that multi-site phosphorylation of cardiac troponin I (cTnI) by protein kinase C is important in both long- and short-term regulation of cardiac function. To determine the specific functional effects of these phosphorylation sites (Ser-43, Ser-45, and Thr-144), we measured tension and sliding speed of thin filaments in reconstituted preparations in which endogenous cTnI was replaced with cTnI phosphorylated by protein kinase C-epsilon or mutated to cTnI-S43E/S45E/T144E, cTnI-S43E/S45E, or cTnI-T144E. We used detergent-skinned mouse cardiac fiber bundles to measure changes in Ca(2+)-dependence of force. Compared with controls, fibers reconstituted with phosphorylated cTnI, cTnI-S43E/S45E/T144E, or cTnI-S43E/S45E were desensitized to Ca(2+), and maximum tension was as much as 27% lower, whereas fibers reconstituted with cTnI-T144E showed no change. In the in vitro motility assay actin filaments regulated by troponin complexes containing phosphorylated cTnI or cTnI-S43E/S45E/T144E showed both a decrease in Ca(2+) sensitivity and maximum sliding speed compared with controls, whereas filaments regulated by cTnI-S43E/S45E showed only decreased maximum sliding speed and filaments regulated by cTnI-T144E demonstrated only desensitization to Ca(2+). Our results demonstrate novel site specificity of effects of PKC phosphorylation on cTnI function and emphasize the complexity of modulation of the actin-myosin interaction by specific changes in the thin filament.  相似文献   
108.
AMP-activated protein kinase (AMPK) is an energy-sensing enzyme central to the regulation of metabolic homeostasis. In the heart AMPK is activated during cardiac stress-induced ATP depletion and functions to stimulate metabolic pathways that restore the AMP/ATP balance. Recently it was demonstrated that AMPK phosphorylates cardiac troponin I (cTnI) at Ser-150 in vitro. We sought to determine if the metabolic regulatory kinase AMPK phosphorylates cTnI at Ser-150 in vivo to alter cardiac contractile function directly at the level of the myofilament. Rabbit cardiac myofibrils separated by two-dimensional isoelectric focusing subjected to a Western blot with a cTnI phosphorylation-specific antibody demonstrates that cTnI is endogenously phosphorylated at Ser-150 in the heart. Treatment of myofibrils with the AMPK holoenzyme increased cTnI Ser-150 phosphorylation within the constraints of the muscle lattice. Compared with controls, cardiac fiber bundles exchanged with troponin containing cTnI pseudo-phosphorylated at Ser-150 demonstrate increased sensitivity of calcium-dependent force development, blunting of both PKA-dependent calcium desensitization, and PKA-dependent increases in length dependent activation. Thus, in addition to the defined role of AMPK as a cardiac metabolic energy gauge, these data demonstrate AMPK Ser-150 phosphorylation of cTnI directly links the regulation of cardiac metabolic demand to myofilament contractile energetics. Furthermore, the blunting effect of cTnI Ser-150 phosphorylation cross-talk can uncouple the effects of myofilament PKA-dependent phosphorylation from β-adrenergic signaling as a novel thin filament contractile regulatory signaling mechanism.  相似文献   
109.
110.
Calcium binding by rabbit skeletal myosin, thin filaments and myofibrils was measured in solutions with and without 2 mM MgATP and with ionic strengths adjusted with KCl to 0.05, 0.10 and 0.14 M. Free Mg2+ was held constant at 1 mM, pH at 7.0 and temperature at 25 °C. In the presence of MgATP, the relation between free Ca2+ and myofibrillar bound calcium shifted to the left as ionic strength was decreased from 0.14 to 0.05 M. In the absence of MgATP, myofibrillar calcium binding was enhanced over a wide range of free Ca2+ concentration, but calcium binding was no longer a function of ionic strength. Similarly, calcium binding by thin filaments and myosin was unaffected by changes in ionic strength from 0.05 to 0.14 M. In view of evidence that cross-bridge connections between thick and thin filaments increase as ionic strength decreases, our results suggest that these connections enhance myofibrillar calcium binding. These results thus confirm previous data of Bremel and Weber (Bremel, R. D. and Weber, A. (1972) Nature New Biol. 238, 97–101) who first showed that nucleotide-free cross-bridge connections enhance thin filament calcium binding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号