首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   758篇
  免费   54篇
  国内免费   1篇
  2024年   1篇
  2023年   1篇
  2022年   4篇
  2021年   20篇
  2020年   11篇
  2019年   6篇
  2018年   16篇
  2017年   11篇
  2016年   18篇
  2015年   41篇
  2014年   58篇
  2013年   53篇
  2012年   64篇
  2011年   71篇
  2010年   35篇
  2009年   29篇
  2008年   45篇
  2007年   57篇
  2006年   35篇
  2005年   30篇
  2004年   27篇
  2003年   29篇
  2002年   22篇
  2001年   22篇
  2000年   21篇
  1999年   16篇
  1998年   7篇
  1997年   10篇
  1996年   5篇
  1995年   5篇
  1994年   4篇
  1993年   3篇
  1992年   6篇
  1991年   6篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1973年   1篇
  1972年   2篇
  1968年   2篇
  1966年   3篇
排序方式: 共有813条查询结果,搜索用时 15 毫秒
71.
West Nile virus (WNV) capsid (C) protein is one of the three viral structural proteins and it encapsidates the viral RNA to form the nucleocapsid. It is known to be a multifunctional protein involved in assembly and apoptosis. WNV C protein was previously found to be phosphorylated in infected cells and bioinformatic analysis revealed 5 putative phosphorylation sites at serine 26, 36, 83, 99 and threonine 100. Phosphorylation was abolished through mutagenesis of these putative phosphorylation sites to investigate how phosphorylation could affect the processes of nucleocapsid assembly like RNA binding, oligomerization and cellular localization. It was found that phosphorylation attenuated its RNA binding activity. Although oligomerization was not inhibited by mutagenesis of the putative phosphorylation sites, the rate of dimerization and oligomerization was affected. Hypophosphorylation of C protein reduced its nuclear localization efficiency and hence enhanced cytoplasmic localization. This study also revealed that although WNV C is phosphorylated in infected cells, the relative level of phosphorylation is reduced over the course of an infection to promote RNA binding and nucleocapsid formation in the cytoplasm. This is the first report to describe how dynamic phosphorylation of WNV C protein modulates the processes involved in nucleocapsid assembly.  相似文献   
72.

Background

Unlike Caucasian populations, genetic factors contributing to the risk of type 2 diabetes mellitus (T2DM) are not well studied in Asian populations. In light of this, and the fact that copy number variation (CNV) is emerging as a new way to understand human genomic variation, the objective of this study was to identify type 2 diabetes–associated CNV in a Korean cohort.

Methodology/Principal Findings

Using the Illumina HumanHap300 BeadChip (317,503 markers), genome-wide genotyping was performed to obtain signal and allelic intensities from 275 patients with type 2 diabetes mellitus (T2DM) and 496 nondiabetic subjects (Total n = 771). To increase the sensitivity of CNV identification, we incorporated multiple factors using PennCNV, a program that is based on the hidden Markov model (HMM). To assess the genetic effect of CNV on T2DM, a multivariate logistic regression model controlling for age and gender was used. We identified a total of 7,478 CNVs (average of 9.7 CNVs per individual) and 2,554 CNV regions (CNVRs; 164 common CNVRs for frequency>1%) in this study. Although we failed to demonstrate robust associations between CNVs and the risk of T2DM, our results revealed a putative association between several CNVRs including chr15:45994758–45999227 (P = 8.6E-04, Pcorr = 0.01) and the risk of T2DM. The identified CNVs in this study were validated using overlapping analysis with the Database of Genomic Variants (DGV; 71.7% overlap), and quantitative PCR (qPCR). The identified variations, which encompassed functional genes, were significantly enriched in the cellular part, in the membrane-bound organelle, in the development process, in cell communication, in signal transduction, and in biological regulation.

Conclusion/Significance

We expect that the methods and findings in this study will contribute in particular to genome studies of Asian populations.  相似文献   
73.
Wang Y  Chen H  Xiao Y  Ng CH  Oh TS  Tan TT  Ng SC 《Nature protocols》2011,6(7):935-942
We describe an effective and simple protocol that uses click chemistry to attach native β-cyclodextrin (β-CD) to silica particles, resulting in a chiral stationary phase (CCNCSP) that can be used for the enantioseparation of chiral drugs by high-performance liquid chromatography (HPLC). Starting from β-CD, the CCNCSP is prepared in several steps: (i) reaction of β-CD with 1-(p-toluenesulfonyl)-imidazole to afford mono-6-toluenesulfonyl-β-CD; (ii) azidolysis of mono-6-toluenesulfonyl-β-CD in dimethylformamide to give mono-6-azido-β-CD (N(3)-CD); (iii) reaction of cuprous iodide with triphenylphosphine to form an organic soluble catalyst CuI(PPh(3)); (iv) preparation of alkynyl-modified silica particles; and (v) click chemistry immobilization of N(3)-CD onto alkynyl-modified silica to afford the desired chiral stationary phase. Synthesis of the stationary phase and column packing takes ~1 week.  相似文献   
74.
One of the most popular damage accumulation theories of ageing is the mitochondrial free radical theory of ageing (mFRTA). The mFRTA proposes that ageing is due to the accumulation of unrepaired oxidative damage, in particular damage to mitochondrial DNA (mtDNA). Within the mFRTA, the "vicious cycle" theory further proposes that reactive oxygen species (ROS) promote mtDNA mutations, which then lead to a further increase in ROS production. Recently, data have been published on Caenorhabditis elegans mutants deficient in one or both forms of mitochondrial superoxide dismutase (SOD). Surprisingly, even double mutants, lacking both mitochondrial forms of SOD, show no reduction in lifespan. This has been interpreted as evidence against the mFRTA because it is assumed that these mutants suffer from significantly elevated oxidative damage to their mitochondria. Here, using a novel mtDNA damage assay in conjunction with related, well established damage and metabolic markers, we first investigate the age-dependent mitochondrial decline in a cohort of ageing wild-type nematodes, in particular testing the plausibility of the "vicious cycle" theory. We then apply the methods and insights gained from this investigation to a mutant strain for C. elegans that lacks both forms of mitochondrial SOD. While we show a clear age-dependent, linear increase in oxidative damage in WT nematodes, we find no evidence for autocatalytic damage amplification as proposed by the "vicious cycle" theory. Comparing the SOD mutants with wild-type animals, we further show that oxidative damage levels in the mtDNA of SOD mutants are not significantly different from those in wild-type animals, i.e. even the total loss of mitochondrial SOD did not significantly increase oxidative damage to mtDNA. Possible reasons for this unexpected result and some implications for the mFRTA are discussed.  相似文献   
75.
76.
77.
78.
79.
Reversible phosphorylation is a key mechanism for the control of intercellular events in eukaryotic cells. In animal cells, Ca2+/CaM-dependent protein phosphorylation and dephosphorylation are implicated in the regulation of a number of cellular processes. However, little is known on the functions of Ca2+/CaM-dependent protein kinases and phosphatases in Ca2+ signaling in plants. From an Arabidopsis expression library, we isolated cDNA encoding a dual specificity protein phosphatase 1, which is capable of hydrolyzing both phosphoserine/threonine and phosphotyrosine residues of the substrates. Using a gel overlay assay, we identified two Ca2+-dependent CaM binding domains (CaMBDI in the N terminus and CaMBDII in the C terminus). Specific binding of CaM to two CaMBD was confirmed by site-directed mutagenesis, a gel mobility shift assay, and a competition assay using a Ca2+/CaM-dependent enzyme. At increasing concentrations of CaM, the biochemical activity of dual specificity protein phosphatase 1 on the p-nitrophenyl phosphate (pNPP) substrate was increased, whereas activity on the phosphotyrosine of myelin basic protein (MBP) was inhibited. Our results collectively indicate that calmodulin differentially regulates the activity of protein phosphatase, dependent on the substrate. Based on these findings, we propose that the Ca2+ signaling pathway is mediated by CaM cross-talks with a protein phosphorylation signal pathway in plants via protein dephosphorylation.  相似文献   
80.
Lon, also known as protease La, belongs to a class of ATP-dependent serine protease. It plays an essential role in degradation of abnormal proteins and of certain short-lived regulatory proteins, and is thought to possess a Ser-Lys catalytic dyad. To examine the structural organization of Lon, we performed an electron microscope analysis. The averaged images of Lon with end-on orientation revealed a six-membered, ring-shaped structure with a central cavity. The side-on view showed a two-layered structure with an equal distribution of mass across the equatorial plane of the complex. Since a Lon subunit possesses two large regions containing nucleotide binding and proteolytic domains, each layer of the Lon hexamer appears to consist of the side projections of one of the major domains arranged in a ring. Lon showed a strong tendency to form hexamers in the presence of Mg(2+), but dissociated into monomers and/or dimers in its absence. Moreover, Mg(2+)-dependent hexamer formation was independent of ATP. These results indicate that Lon has a hexameric ring-shaped structure with a central cavity, and that the establishment of this configuration requires Mg(2+), but not ATP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号