首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2358篇
  免费   141篇
  2022年   9篇
  2021年   16篇
  2020年   6篇
  2019年   11篇
  2018年   21篇
  2017年   16篇
  2016年   33篇
  2015年   37篇
  2014年   51篇
  2013年   88篇
  2012年   111篇
  2011年   104篇
  2010年   50篇
  2009年   67篇
  2008年   117篇
  2007年   115篇
  2006年   95篇
  2005年   99篇
  2004年   112篇
  2003年   124篇
  2002年   129篇
  2001年   118篇
  2000年   96篇
  1999年   101篇
  1998年   45篇
  1997年   40篇
  1996年   45篇
  1995年   28篇
  1994年   25篇
  1993年   32篇
  1992年   55篇
  1991年   68篇
  1990年   57篇
  1989年   43篇
  1988年   51篇
  1987年   38篇
  1986年   36篇
  1985年   37篇
  1984年   24篇
  1983年   24篇
  1982年   16篇
  1981年   16篇
  1980年   18篇
  1979年   13篇
  1978年   9篇
  1976年   11篇
  1975年   6篇
  1974年   5篇
  1972年   7篇
  1966年   4篇
排序方式: 共有2499条查询结果,搜索用时 15 毫秒
241.
Antibody-dependent cellular cytotoxicity (ADCC) is an important effector function determining the clinical efficacy of therapeutic antibodies. Core fucose removal from N-glycans on the Fc portion of immunoglobulin G (IgG) improves the binding affinity for Fcγ receptor IIIa (FcγRIIIa) and dramatically enhances ADCC. Our previous structural analyses revealed that Tyr–296 of IgG1-Fc plays a critical role in the interaction with FcγRIIIa, particularly in the enhanced FcγRIIIa binding of nonfucosylated IgG1. However, the importance of the Tyr–296 residue in the antibody in the interaction with various Fcγ receptors has not yet been elucidated. To further clarify the biological importance of this residue, we established comprehensive Tyr–296 mutants as fucosylated and nonfucosylated anti-CD20 IgG1s rituximab variants and examined their binding to recombinant soluble human Fcγ receptors: shFcγRI, shFcγRIIa, shFcγRIIIa, and shFcγRIIIb. Some of the mutations affected the binding of antibody to not only shFcγRIIIa but also shFcγRIIa and shFcγRIIIb, suggesting that the Tyr–296 residue in the antibody was also involved in interactions with FcγRIIa and FcγRIIIb. For FcγRIIIa binding, almost all Tyr–296 variants showed lower binding affinities than the wild-type antibody, irrespective of their core fucosylation, particularly in Y296K and Y296P. Notably, only the Y296W mutant showed improved binding to FcγRIIIa. The 3.00 Å-resolution crystal structure of the nonfucosylated Y296W mutant in complex with shFcγRIIIa harboring two N-glycans revealed that the Tyr-to-Trp substitution increased the number of potential contact atoms in the complex, thus improving the binding of the antibody to shFcγRIIIa. The nonfucosylated Y296W mutant retained high ADCC activity, relative to the nonfucosylated wild-type IgG1, and showed greater binding affinity for FcγRIIa. Our data may improve our understanding of the biological importance of human IgG1-Fc Tyr–296 in interactions with various Fcγ receptors, and have applications in the modulation of the IgG1-Fc function of therapeutic antibodies.  相似文献   
242.
ABSTRACT. Here we report a genetically confirmed case of Creutzfeldt-Jakob disease with a prion protein gene codon 180 mutation presenting atypical magnetic resonance imaging findings. The present case exhibited an acute onset and lateralized neurologic signs, and progressive cognitive impairment. No myoclonus or periodic synchronous discharges on electroencephalography were observed. Diffusion-weighted images revealed areas of high signal intensity in the right frontal and temporal cortices at onset that extended to the whole cortex and basal ganglia of the right cerebral hemisphere at 3 months. Although the cerebrospinal fluid (CSF) was initially negative for neuron specific enolase, tau protein, 14–3–3 protein, and abnormal prion protein, the CSF was positive for these brain-derived proteins at 3 months after onset.  相似文献   
243.
244.
The infectious agents of the transmissible spongiform encephalopathies are composed of amyloidogenic prion protein, PrPSc. Real-time quaking-induced conversion can amplify very small amounts of PrPSc seeds in tissues/body fluids of patients or animals. Using this in vitro PrP-amyloid amplification assay, we quantitated the seeding activity of affected human brains. End-point assay using serially diluted brain homogenates of sporadic Creutzfeldt–Jakob disease patients demonstrated that 50% seeding dose (SD50) is reached approximately 1010/g brain (values varies 108.79–10.63/g). A genetic case (GSS-P102L) yielded a similar level of seeding activity in an autopsy brain sample. The range of PrPSc concentrations in the samples, determined by dot-blot assay, was 0.6–5.4 μg/g brain; therefore, we estimated that 1 SD50 unit was equivalent to 0.06–0.27 fg of PrPSc. The SD50 values of the affected brains dropped more than three orders of magnitude after autoclaving at 121°C. This new method for quantitation of human prion activity provides a new way to reduce the risk of iatrogenic prion transmission.  相似文献   
245.
246.

Purpose

Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance.

Methods and Results

DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨm) depolarization, exhibited attenuated insulin signaling and 2-deoxy-d-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H2O2), they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨm depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H2O2-induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨm depolarization and impaired 2-DG uptake, however they improved insulin signaling.

Conclusions

A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance.  相似文献   
247.
Urodele amphibians have remarkable organ regeneration capability, and their limb regeneration capability has been investigated as a representative phenomenon. In the early 19th century, nerves were reported to be an essential tissue for the successful induction of limb regeneration. Nerve substances that function in the induction of limb regeneration responses have long been sought. A new experimental system called the accessory limb model (ALM) has been established to identify the nerve factors. Skin wounding in urodele amphibians results in skin wound healing but never in limb induction. However, nerve deviation to the wounded skin induces limb formation in ALM. Thus, nerves can be considered to have the ability to transform skin wound healing to limb formation. In the present study, co-operative Bmp and Fgf application, instead of nerve deviation, to wounded skin transformed skin wound healing to limb formation in two urodele amphibians, axolotl (Ambystoma mexicanum) and newt (Pleurodeles waltl). Our findings demonstrate that defined factors can induce homeotic transformation in postembryonic bodies of urodele amphibians. The combination of Bmp and Fgf(s) may contribute to the development of novel treatments for organ regeneration.  相似文献   
248.
Creutzfeldt-Jakob disease (CJD) is a transmissible, fatal, neurodegenerative disease in humans. Recently, various drugs have been reported to be useful in the treatment of CJD; however, for such treatments to be useful it is essential to rapidly and accurately diagnose CJD. 124 CJD patients and 87 with other diseases causing rapid progressive dementia were examined. Cerebral spinal fluid (CSF) from CJD patients was analyzed by 2D-PAGE and the protein expression pattern was compared with that from healthy subjects. One of three CJD-specific spots was found to be fatty acid binding protein (FABP), and heart-type FABP (H-FABP) was analyzed as a new biochemical marker for CJD. H-FABP ELISA results were compared between CJD patients and patients with other diseases (n = 211). Visual readout accuracy of the Rapicheck® H-FABP test panel for CSF was analyzed using an independent measure of CSF H-FABP concentration. The distribution of H-FABP in the brains of CJD patients was examined by immunohistochemistry. ELISA sensitivity and specificity were 90.3% and 92.9%, respectively, and Rapicheck® H-FABP sensitivity and specificity were 87.9% and 96.0%, respectively. ELISA and Rapicheck® H-FABP assays provided comparable results for 14-3-3 protein and total tau protein. Elevated H-FABP levels were associated with an accumulation of abnormal prion protein, astrocytic gliosis, and neuronal loss in the cerebral cortices of CJD patients. In conclusion, Rapicheck® H-FABP of CSF specimens enabled quick and frequent diagnosis of CJD. H-FABP represents a new biomarker for CJD distinct from 14-3-3 protein and total tau protein.  相似文献   
249.
Rice (Oryza sativa) endosperm accumulates a massive amount of storage starch and storage proteins during seed development. However, little is known about the regulatory system involved in the production of storage substances. The rice flo2 mutation resulted in reduced grain size and starch quality. Map-based cloning identified FLOURY ENDOSPERM2 (FLO2), a member of a novel gene family conserved in plants, as the gene responsible for the rice flo2 mutation. FLO2 harbors a tetratricopeptide repeat motif, considered to mediate a protein-protein interactions. FLO2 was abundantly expressed in developing seeds coincident with production of storage starch and protein, as well as in leaves, while abundant expression of its homologs was observed only in leaves. The flo2 mutation decreased expression of genes involved in production of storage starch and storage proteins in the endosperm. Differences between cultivars in their responsiveness of FLO2 expression during high-temperature stress indicated that FLO2 may be involved in heat tolerance during seed development. Overexpression of FLO2 enlarged the size of grains significantly. These results suggest that FLO2 plays a pivotal regulatory role in rice grain size and starch quality by affecting storage substance accumulation in the endosperm.  相似文献   
250.
Misfolded glycoproteins are translocated from endoplasmic reticulum (ER) into the cytosol for proteasome-mediated degradation. A mannose-6-phosphate receptor homology (MRH) domain is commonly identified in a variety of proteins and, in the case of OS-9 and XTP3-B, is involved in glycoprotein ER-associated degradation (ERAD). Trimming of outermost α1,2-linked mannose on C-arm of high-mannose-type glycan and binding of processed α1,6-linked mannosyl residues by the MRH domain are critical steps in guiding misfolded glycoproteins to enter ERAD. Here we report the crystal structure of a human OS-9 MRH domain (OS-9(MRH)) complexed with α3,α6-mannopentaose. The OS-9(MRH) has a flattened β-barrel structure with a characteristic P-type lectin fold and possesses distinctive double tryptophan residues in the oligosaccharide-binding site. Our crystallographic result in conjunction with nuclear magnetic resonance (NMR) spectroscopic and biochemical results provides structural insights into the mechanism whereby OS-9 specifically recognizes Manα1,6Manα1,6Man residues on the processed C-arm through the continuous double tryptophan (WW) motif.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号