首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2962篇
  免费   267篇
  国内免费   1篇
  3230篇
  2022年   15篇
  2021年   23篇
  2020年   10篇
  2019年   22篇
  2018年   36篇
  2017年   20篇
  2016年   31篇
  2015年   60篇
  2014年   63篇
  2013年   185篇
  2012年   126篇
  2011年   144篇
  2010年   94篇
  2009年   92篇
  2008年   158篇
  2007年   140篇
  2006年   147篇
  2005年   143篇
  2004年   147篇
  2003年   147篇
  2002年   107篇
  2001年   91篇
  2000年   130篇
  1999年   99篇
  1998年   47篇
  1997年   38篇
  1996年   34篇
  1995年   38篇
  1994年   34篇
  1993年   42篇
  1992年   95篇
  1991年   80篇
  1990年   78篇
  1989年   67篇
  1988年   73篇
  1987年   44篇
  1986年   48篇
  1985年   54篇
  1984年   39篇
  1983年   34篇
  1982年   13篇
  1981年   21篇
  1980年   15篇
  1979年   19篇
  1978年   14篇
  1977年   17篇
  1976年   13篇
  1973年   8篇
  1971年   7篇
  1968年   6篇
排序方式: 共有3230条查询结果,搜索用时 15 毫秒
71.
72.
73.
A simple chiral analysis of amino acid esters by fluorine‐19 nuclear magnetic resonance (19F NMR) through the modified James–Bull method is described. Thus, amino acid ester acid salt was treated with 5‐fluoro‐2‐formylphenylboronic acid and (S)‐BINOL in the presence of triethylamine (TEA) and MS4A for 10 minutes. The reaction mixture was analysed by 19F NMR directly to afford good quantifications.  相似文献   
74.
The centrosome-associated C1orf96/Centriole, Cilia and Spindle-Associated Protein (CSAP) targets polyglutamylated tubulin in mitotic microtubules (MTs). Loss of CSAP causes critical defects in brain development; however, it is unclear how CSAP association with MTs affects mitosis progression. In this study, we explored the molecular mechanisms of the interaction of CSAP with mitotic spindles. Loss of CSAP caused MT instability in mitotic spindles and resulted in mislocalization of Nuclear protein that associates with the Mitotic Apparatus (NuMA), with defective MT dynamics. Thus, CSAP overload in the spindles caused extensive MT stabilization and recruitment of NuMA. Moreover, MT stabilization by CSAP led to high levels of polyglutamylation on MTs. MT depolymerization by cold or nocodazole treatment was inhibited by CSAP binding. Live-cell imaging analysis suggested that CSAP-dependent MT-stabilization led to centrosome-free MT aster formation immediately upon nuclear envelope breakdown without γ-tubulin. We therefore propose that CSAP associates with MTs around centrosomes to stabilize MTs during mitosis, ensuring proper bipolar spindle formation and maintenance.  相似文献   
75.
A new mode of herbicidal action was established by finding specific inhibitors of imidazoleglycerol phosphate dehydratase, an enzyme of histidine (His) biosynthesis. Three triazole phosphonates inhibited the reaction of the enzyme with Ki values of 40 [plus or minus] 6.5, 10 [plus or minus] 1.6, and 8.5 [plus or minus] 1.4 nM, respectively, and were highly cytotoxic to cultured plant cells. This effect was completely reversed by the addition of His, proving that the cytotoxicity was primarily caused by the inhibition of His biosynthesis. These inhibitors showed wide-spectrum, postemergent herbicidal activity at application rates ranging from 0.05 to 2 kg/ha.  相似文献   
76.
A clinical isolate of Pseudomonas aeruginosa was found capable of utilizing salicylate by the salicylate hydroxylase and beta-ketoadipate pathway.  相似文献   
77.
Changes in morphology of chloroplast nuclei (cp-nuclei), totalcp-DNA content, number of cp-nuclei, oxygen-evolution activityand chlorophyll (a and b) content were examined during the degenerationand development of chloroplasts, using Chlamydomonas reinhardiicells which had been incubated on solid medium for various periods. Under 4'-6-diamidino-2-phenylindole (DAPI) epifluorescence microscopy,each cell that had been incubated for 7 days had one cell nucleus,one cup-shaped chloroplast and about 10 small, dispersed cp-nucleiin the chloroplast. One day after incubation of these cellson fresh medium, the cell volume and cp-nuclei increased insize 2-3 fold, but rapidly decreased in size after cell division.After about 7 days of incubation, cells ceased to divide andcp-nuclei began to associate with each other. At about 20 daysthey formed a ring-shaped structure surrounding the pyrenoid,followed by condensation into one cp-nuclear particle near thepyrenoid. When 41-day-old cells, having only one cp-nucleus,were reinoculated on fresh solid medium, the cp-nucleus increasedin size 2–3 fold, divided into several cp-nuclear particlesand then dispersed into the chloroplast, forming a bead-likestructure, before cell division. From microscopic fluorometry,a 4-fold increase in total cp-DNA content per chloroplast, withoutan increase in the number of cp-nuclear particles per chloroplast,occurred one day after the start of the experiment and one dayafter reinoculation of 41-day-old cells onto fresh medium. Theprocess of condensation of dispersed cp-nuclear particles intoone cp-nucleus during degeneration of the chloroplast was notaccompanied by any change in total cp-DNA content per chloroplast.A large peak of oxygen-evolution (0.6–0.9 pmoles/cell/hour)was seen one day after inoculation and reinoculation of thecells. The chlorophyll content (a+b) was high (1.2–2.2pg/cell) during the first week of incubation, after which itgradually decreased. (Received December 18, 1985; Accepted April 2, 1986)  相似文献   
78.
Parkinson's disease (PD) is a common neurodegenerative disease, but its pathogenesis remains elusive. A mutation in ubiquitin C‐terminal hydrolase L1 (UCH‐L1) is responsible for a form of genetic PD which strongly resembles the idiopathic PD. We previously showed that 1‐(3′,4′‐dihydroxybenzyl)‐1,2,3,4‐tetrahydroisoquinoline (3′,4′DHBnTIQ) is an endogenous parkinsonism‐inducing dopamine derivative. Here, we investigated the interaction between 3′,4′DHBnTIQ and UCH‐L1 and its possible role in the pathogenesis of idiopathic PD. Our results indicate that 3′,4′DHBnTIQ binds to UCH‐L1 specifically at Cys152 in vitro. In addition, 3′,4′DHBnTIQ treatment increased the amount of UCH‐L1 in the insoluble fraction of SH‐SY5Y cells and inhibited its hydrolase activity to 60%, reducing the level of ubiquitin in the soluble fraction of SH‐SY5Y cells. Catechol‐modified UCH‐L1 as well as insoluble UCH‐L1 were detected in the midbrain of 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine‐treated PD model mice. Structurally as well as functionally altered UCH‐L1 have been detected in the brains of patients with idiopathic PD. We suggest that conjugation of UCH‐L1 by neurotoxic endogenous compounds such as 3′,4′DHBnTIQ might play a key role in onset and progression of idiopathic PD.

  相似文献   

79.
Specialized microenvironment, or neurogenic niche, in embryonic and postnatal mouse brain plays critical roles during neurogenesis throughout adulthood. The subventricular zone (SVZ) and the dentate gyrus (DG) of hippocampus in the mouse brain are two major neurogenic niches where neurogenesis is directed by numerous regulatory factors. Now, we report Akhirin (AKH), a stem cell maintenance factor in mouse spinal cord, plays a pivotal regulatory role in the SVZ and in the DG. AKH showed specific distribution during development in embryonic and postnatal neurogenic niches. Loss of AKH led to abnormal development of the ventricular zone and the DG along with reduction of cellular proliferation in both regions. In AKH knockout mice (AKH−/−), quiescent neural stem cells (NSCs) increased, while proliferative NSCs or neural progenitor cells decreased at both neurogenic niches. In vitro NSC culture assay showed increased number of neurospheres and reduced neurogenesis in AKH−/−. These results indicate that AKH, at the neurogenic niche, exerts dynamic regulatory role on NSC self-renewal, proliferation and differentiation during SVZ and hippocampal neurogenesis.  相似文献   
80.
Extracellular proteases of Staphylococcus aureus are emerging as potential virulence factors that are relevant to the pathogenicity of staphylococcal infections. These proteases may also be involved in the proteolytic cleavage of other exoproteins released from this organism. To define the target exoproteins and their sites of cleavage by proteases, high-resolution two-dimensional polyacrylamide gel electrophoresis followed by N-terminal amino acid sequencing of exoprotein spots was performed. Two to three hundred exoprotein spots were detected at the early-stationary phase of cultures of S. aureus NCTC8325, and then at the late-stationary stage most of these high molecular protein spots became invisible due to further proteolytic degradation. As the result of N-terminal analysis, lipase, triacylglycerol lipase, orf619 protein and orf388 protein were detected as multiple spots at the early-stationary phase. We found that these exoproteins were cleaved at 3, 7, 4 and 4 different sites, respectively, by proteases. According to the M.W. and pI of each peptide spot obtained from the gel and their matches with calculated values in addition to their N-terminal sequences, we showed that the positions of putative peptides resulted from proteolytic cleavage of these proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号