首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1067篇
  免费   57篇
  1124篇
  2024年   2篇
  2023年   3篇
  2022年   9篇
  2021年   28篇
  2020年   19篇
  2019年   10篇
  2018年   16篇
  2017年   17篇
  2016年   31篇
  2015年   59篇
  2014年   67篇
  2013年   79篇
  2012年   85篇
  2011年   82篇
  2010年   46篇
  2009年   51篇
  2008年   54篇
  2007年   66篇
  2006年   45篇
  2005年   50篇
  2004年   43篇
  2003年   50篇
  2002年   40篇
  2001年   33篇
  2000年   30篇
  1999年   30篇
  1998年   8篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1994年   5篇
  1993年   4篇
  1992年   5篇
  1991年   6篇
  1990年   8篇
  1989年   14篇
  1988年   1篇
  1987年   6篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
  1979年   3篇
  1977年   2篇
  1975年   2篇
  1974年   1篇
  1970年   1篇
  1914年   1篇
  1891年   1篇
排序方式: 共有1124条查询结果,搜索用时 15 毫秒
61.
Syntheses and evaluation of fluoroalkylated ciprofloxacin analogues are described. Among these analogues, N?'-3-fluoropropylciprofloxacin (16) showed the most efficient antibacterial activity against E. coli strains (DH5α and TOP10) and a high binding affinity for DNA gyrase of bacteria. To develop bacteria-specific infection imaging agents for positron emission tomography (PET), no-carrier-added N?-3-[1?F]fluoropropylciprofloxacin ([1?F]16) was prepared in two steps from N?-3-methanesufonyloxypropylciprofloxacin, resulting in a 40% radiochemical yield (decay corrected for 100 min) via the tert-alcohol media radiofluorination protocol with high radiochemical purity (> 99%) as well as high specific activity (149 ± 75 GBq/μmol). The agent was stable (> 90%), as shown by an in vitro human serum stability assay. A bacterial uptake and blocking study of [1?F]16 using authentic compound 16 in TOP10 cells demonstrated its high specific bacterial uptake. The results suggest that this radiotracer holds promise as a useful bacterial infection radiopharmaceutical for PET imaging.  相似文献   
62.
The syntheses and SAR of new series of β-amyloid binding agents are reported. The effort to optimize signal-to-background ratios for these ligands are described. Compounds 8, 21 and 30 displayed desirable lipophilicity and pharmacokinetic properties. Compounds 8 and 21 were evaluated with in vitro autoradiographic studies and in vivo in APP/PS1 transgenic mice. It is shown that it was possible to increase the signal-to-background ratios compared to PIB 1, as demonstrated by compounds 8 and 21.  相似文献   
63.
Genome-scale metabolic models have been appearing with increasing frequency and have been employed in a wide range of biotechnological applications as well as in biological studies. With the metabolic model as a platform, engineering strategies have become more systematic and focused, unlike the random shotgun approach used in the past. Here we present the genome-scale metabolic model of the versatile Gram-negative bacterium Pseudomonas putida, which has gained widespread interest for various biotechnological applications. With the construction of the genome-scale metabolic model of P. putida KT2440, PpuMBEL1071, we investigated various characteristics of P. putida, such as its capacity for synthesizing polyhydroxyalkanoates (PHA) and degrading aromatics. Although P. putida has been characterized as a strict aerobic bacterium, the physiological characteristics required to achieve anaerobic survival were investigated. Through analysis of PpuMBEL1071, extended survival of P. putida under anaerobic stress was achieved by introducing the ackA gene from Pseudomonas aeruginosa and Escherichia coli.  相似文献   
64.
65.
We identified an Arabidopsis (Arabidopsis thaliana) ethyl methanesulfonate mutant, modified vacuole phenotype1-1 (mvp1-1), in a fluorescent confocal microscopy screen for plants with mislocalization of a green fluorescent protein-δ tonoplast intrinsic protein fusion. The mvp1-1 mutant displayed static perinuclear aggregates of the reporter protein. mvp1 mutants also exhibited a number of vacuole-related phenotypes, as demonstrated by defects in growth, utilization of stored carbon, gravitropic response, salt sensitivity, and specific susceptibility to the fungal necrotroph Alternaria brassicicola. Similarly, crosses with other endomembrane marker fusions identified mislocalization to aggregate structures, indicating a general defect in protein trafficking. Map-based cloning showed that the mvp1-1 mutation altered a gene encoding a putative myrosinase-associated protein, and glutathione S-transferase pull-down assays demonstrated that MVP1 interacted specifically with the Arabidopsis myrosinase protein, THIOGLUCOSIDE GLUCOHYDROLASE2 (TGG2), but not TGG1. Moreover, the mvp1-1 mutant showed increased nitrile production during glucosinolate hydrolysis, suggesting that MVP1 may play a role in modulation of myrosinase activity. We propose that MVP1 is a myrosinase-associated protein that functions, in part, to correctly localize the myrosinase TGG2 and prevent inappropriate glucosinolate hydrolysis that could generate cytotoxic molecules.The plant endomembrane system is a complex network of subcellular compartments that includes the endoplasmic reticulum (ER), Golgi apparatus, vacuole, plasma membrane, secretory vesicles, and numerous intermediary compartments. Protein trafficking through the endomembrane system requires specific cargo recognition and delivery mechanisms that are mediated by a series of highly specific targeting signals (Surpin and Raikhel, 2004), whose proper recognition is critical for the function of numerous downstream processes, such as floral development (Sohn et al., 2007), gravitropism (Kato et al., 2002; Surpin et al., 2003; Yano et al., 2003), abiotic stress tolerance (Zhu et al., 2002), autophagy (Surpin et al., 2003; Bassham., 2007), pathogen defense (Robatzek, 2007), and turgor pressure and growth (De, 2000).The importance of protein trafficking for plant survival was demonstrated by the identification of the essential Arabidopsis (Arabidopsis thaliana) gene VACUOLELESS1 (VCL1; Rojo et al., 2001). VCL1 was identified as a homolog of Saccharomyces cerevisiae VPS16, which is critical for yeast vacuole biogenesis. Knockouts of yeast VPS16 lack discernible vacuoles but survive despite their severe phenotype. The absence of vacuoles in Arabidopsis vcl1-1 mutants results in embryo lethality (Rojo et al., 2001). The essential nature of trafficking in plants was also demonstrated by insertional mutagenesis of syntaxin genes, where lethality was observed after disruption of single genes in families with highly homologous members (Lukowitz et al., 1996; Sanderfoot et al., 2001). Thus, despite large families of endomembrane components with many homologous genes, many are not redundant in Arabidopsis.Although embryo-lethal mutations provide critical data, it is difficult to obtain additional information. Less severe mutations have proven successful for functional genetics studies of endomembrane trafficking proteins. For example, point mutations in the KATAMARI1/MURUS3 (KAM1/MUR3; Tamura et al., 2005) and KATAMARI2/GRAVITROPISM DEFECTIVE2 (KAM2/GRV2; Tamura et al., 2007; Silady et al., 2008) genes lead to disruption of endomembranes, resulting in the formation of perinuclear aggregates containing organelles. Nonlethal trafficking disruptions have also been generated using chemical genomics, where small molecules were used to perturb trafficking of a soluble cargo protein (Zouhar et al., 2004) and localization of endomembrane markers (Surpin et al., 2005; Robert et al., 2008). Such studies have provided valuable clues about these essential cellular processes.In order to obtain less severe, viable mutants with defects in endomembrane protein trafficking, we previously identified point mutants with defects in localization of a tonoplast reporter protein, GFP:δ-TIP (Avila et al., 2003). Two hundred one putative mutants were grouped into four categories based on the nature of their defects. One unique mutant, cell shape phenotype1, was recently characterized as a trehalose-6-phosphate synthase with roles in regulation of plant architecture, epidermal pavement cell shape, and trichome branching (Chary et al., 2008).Here, we describe an endomembrane trafficking mutant categorized by perinuclear aggregates of GFP:δ-TIP fluorescence (Avila et al., 2003). We refer to this mutant as modified vacuole phenotype1-1 (mvp1-1). At least five endomembrane fusion proteins are partially relocalized to these structures. Positional cloning identified MVP1 as a myrosinase-associated protein (MyAP) localized previously to the tonoplast by proteomics (Carter et al., 2004). mvp1-1 mutants showed reduced endomembrane system functionality, as demonstrated by defects in growth, utilization of stored carbon, gravitropic responsiveness, salt sensitivity, and increased susceptibility to a fungal necrotroph. MVP1 interacted specifically with THIOGLUCOSIDE GLUCOHYDROLASE2 (TGG2), a known myrosinase protein in Arabidopsis, and the mvp1-1 mutation had a significant effect on nitrile production during glucosinolate hydrolysis, suggesting a role in myrosinase function. Furthermore, MVP1 may function in quality control of glucosinolate hydrolysis by contributing to the proper tonoplast localization of TGG2.  相似文献   
66.
Cephalosporium acremonium was cultivated in fermentation medium containing sucrose or methyl oleate as a carbon source for cephalosporin C production. The level of antibiotic production was 48 g of cephalosporin C per liter under optimum conditions when methyl oleate was used. The C18:1 (oleic acid) methyl ester appeared to be utilized faster than the C18:2 (linoleic acid) methyl ester in fermentation broth. Physiological characteristics of C. acremonium were investigated by determining the fatty acid composition of the total cellular free lipid. Significant changes in cellular fatty acid composition occurred during inoculum cultivation and fermentation. The percentage of C18:1 increased from 19.1 to 38.5%, but the percentage of C18:2 decreased from 56.7 to 36.1%, and there was an increase in pH during inoculum cultivation. The cellular fatty acid composition of C. acremonium grown in fermentation medium containing methyl oleate (methyl oleate medium) was significantly different from that in fermentation medium containing sucrose (sucrose medium). The major fatty acids detected were C16:0 (palmitic acid), C18:1, and C18:2. In methyl oleate medium, the ratio of C18:1 to C18:2 increased from 0.34 to 1.37, while the cell morphology changed from hyphae to arthrospores and conidia. In contrast, in sucrose medium, the ratio of C18:1 to C18:2 decreased from 0.70 to 0.43, and most of the cells remained hyphal at the end of fermentation. We observed that hyphae contained a higher proportion of C18:2 but arthrospores and conidia contained a higher proportion of C18:1.  相似文献   
67.
68.
69.
目的:研究大鼠脑缺血/再灌注过程中血流量及与脑组织水含量变化的趋势。方法:选取5只成年SD雄性大鼠(n=5),参照改良Zea-Longa线栓法制备大鼠大脑中动脉缺血/再灌注模型,2 h后拔出线栓。利用PeriCam PSI血流灌注成像系统实时监测大鼠在缺血前及缺血5 min、30 min、1 h、2 h、再灌注5 min、30 min、1 h、2 h、4 h、6 h及24 h的血流灌注量,记录在ROI(感兴趣区)测量的数值。再选取15只成年SD雄性大鼠,分为Control组、缺血2 h、再灌注30 min、4 h及24 h组(n=3)。正常组不做任何处理,实验组按上述线栓法制备MCAO模型。取新鲜脑组织用干湿重法测定其左、右半球的水含量。结果:栓塞时缺血侧血流量逐渐下降,缺血2 h下降最低(P<0.05);再灌注早期血流量恢复较大(P<0.05),30 min时显著下降(P<0.05),4 h明显上升(P<0.05),24 h再次上升(P<0.05)但低于缺血前血流量(P>0.05)。脑组织水含量测量,缺血2 h组和再灌注30 min组与正常组无明显差异(P>0.05);再灌4 h组和再灌24 h组明显增高(P<0.05),且再灌24 h组明显高于再灌4 h组(P<0.05)。结论:大鼠脑缺血/再灌注过程中血流量和脑组织中水含量的变化存在一定的规律,且脑组织中水含量与再灌注过程中血流量的变化有一定关系。  相似文献   
70.
Summary Deactivation ofCandida rugosa lipase was found to be complex. Hydrophobic interaction induced by iso-octane influenced the initial phase of deactivation, and increased the turn-over rate of the intermediate in the transition phase. After urea-treatment the structure of the last phase was not further influenced by thermal treatment, whereas that of initial phase was more sensitive to temperature change. Charge interaction was important in maintaining the structure during the deactivation, and especially anion charge might be a major factor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号