首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   555篇
  免费   37篇
  592篇
  2023年   4篇
  2022年   12篇
  2021年   24篇
  2020年   17篇
  2019年   20篇
  2018年   17篇
  2017年   12篇
  2016年   20篇
  2015年   37篇
  2014年   41篇
  2013年   46篇
  2012年   52篇
  2011年   48篇
  2010年   26篇
  2009年   33篇
  2008年   28篇
  2007年   34篇
  2006年   32篇
  2005年   24篇
  2004年   22篇
  2003年   15篇
  2002年   14篇
  2001年   5篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1993年   1篇
  1969年   1篇
排序方式: 共有592条查询结果,搜索用时 15 毫秒
511.
Human exonuclease 1 (hEXO1) acts directly in diverse DNA processing events, including replication, mismatch repair (MMR), and double strand break repair (DSBR), and it was also recently described to function as damage sensor and apoptosis inducer following DNA damage. In contrast, 14-3-3 proteins are regulatory phosphorserine/threonine binding proteins involved in the control of diverse cellular events, including cell cycle checkpoint and apoptosis signaling. hEXO1 is regulated by post-translation Ser/Thr phosphorylation in a yet not fully clarified manner, but evidently three phosphorylation sites are specifically induced by replication inhibition leading to protein ubiquitination and degradation. We demonstrate direct and robust interaction between hEXO1 and six of the seven 14-3-3 isoforms in vitro, suggestive of a novel protein interaction network between DNA repair and cell cycle control. Binding experiments reveal weak affinity of the more selective isoform 14-3-3σ but both 14-3-3 isoforms η and σ significantly stimulate hEXO1 activity, indicating that these regulatory proteins exert a common regulation mode on hEXO1. Results demonstrate that binding involves the phosphorable amino acid S746 in hEXO1 and most likely a second unidentified binding motif. 14-3-3 associations do not appear to directly influence hEXO1 in vitro nuclease activity or in vitro DNA replication initiation. Moreover, specific phosphorylation variants, including hEXO1 S746A, are efficiently imported to the nucleus; to associate with PCNA in distinct replication foci and respond to DNA double strand breaks (DSBs), indicating that 14-3-3 binding does not involve regulating the subcellular distribution of hEXO1. Altogether, these results suggest that association may be related to regulation of hEXO1 availability during the DNA damage response to plausibly prevent extensive DNA resection at the damage site, as supported by recent studies.  相似文献   
512.
513.
Here, we present a comparative analysis of the nodulation processes of Aeschynomene afraspera and A. indica that differ in their requirement for Nod factors (NF) to initiate symbiosis with photosynthetic bradyrhizobia. The infection process and nodule organogenesis was examined using the green fluorescent protein-labeled Bradyrhizobium sp. strain ORS285 able to nodulate both species. In A. indica, when the NF-independent strategy is used, bacteria penetrated the root intercellularly between axillary root hairs and invaded the subepidermal cortical cells by invagination of the host cell wall. Whereas the first infected cortical cells collapsed, the infected ones immediately beneath kept their integrity and divided repeatedly to form the nodule. In A. afraspera, when the NF-dependent strategy is used, bacteria entered the plant through epidermal fissures generated by the emergence of lateral roots and spread deeper intercellularly in the root cortex, infecting some cortical cells during their progression. Whereas the infected cells of the lower cortical layers divided rapidly to form the nodule, the infected cells of the upper layers gave rise to an outgrowth in which the bacteria remained enclosed in large tubular structures. Together, two distinct modes of infection and nodule organogenesis coexist in Aeschynomene legumes, each displaying original features.  相似文献   
514.
Biogeochemical properties, including nutrient concentrations, carbon gas fluxes, microbial biomass, and hydrolytic enzyme activities, were determined along a strong nutrient gradient in an ombrotrophic peatland in the Republic of Panama. Total phosphorus in surface peat decreased markedly along a 2.7 km transect from the marginal Raphia taedigera swamp to the interior sawgrass swamp, with similar trends in total nitrogen and potassium. There were parallel changes in the forest structure: basal area decreased dramatically from the margins to the interior, while tree diversity was greatest at sites with extremely low concentrations of readily-exchangeable phosphate. Soil microbial biomass concentrations declined in parallel with nutrient concentrations, although microbes consistently contained a large proportion (up to 47%) of the total soil phosphorus. Microbial C:P and N:P ratios and hydrolytic enzyme activities, including those involved in the cycles of carbon, nitrogen, and phosphorus, increased towards the nutrient-poor wetland interior, indicating strong below-ground nutrient limitation. Soil CO2 fluxes and CH4 fluxes did not vary systematically along the nutrient gradient, although potential soil respiration determined on drained soils was lower from nutrient-poor sites. Soil respiration responded strongly to drainage and increased temperature. Taken together, our results demonstrate that nutrient status exerts a strong control on above and below-ground processes in tropical peatlands with implications for carbon dynamics and hence long term development of such ecosystems.  相似文献   
515.
Peatlands are a critical carbon store comprising 30% of the Earth’s terrestrial soil carbon. Sphagnum mosses comprise up to 90% of peat in the northern hemisphere but impacts of climate change on Sphagnum mosses are poorly understood, limiting development of sustainable peatland management and restoration. This study investigates the effects of elevated atmospheric CO2 (eCO2) (800 ppm) and hydrology on the growth of Sphagnum fallax, Sphagnum capillifolium and Sphagnum papillosum and greenhouse gas fluxes from moss–peat mesocosms. Elevated CO2 levels increased Sphagnum height and dry weight but the magnitude of the response differed among species. The most responsive species, S. fallax, yielded the most biomass compared to S. papillosum and S. capillifolium. Water levels and the CO2 treatment were found to interact, with the highest water level (1 cm below the surface) seeing the largest increase in dry weight under eCO2 compared to ambient (400 ppm) concentrations. Initially, CO2 flux rates were similar between CO2 treatments. After week 9 there was a consistent three-fold increase of the CO2 sink strength under eCO2. At the end of the experiment, S. papillosum and S. fallax were greater sinks of CO2 than S. capillifolium and the ? 7 cm water level treatment showed the strongest CO2 sink strength. The mesocosms were net sources of CH4 but the source strength varied with species, specifically S. fallax produced more CH4 than S. papillosum and S. capillifolium. Our findings demonstrate the importance of species selection on the outcomes of peatland restoration with regards to Sphagnum’s growth and GHG exchange.  相似文献   
516.
517.
518.
The production of phytohormones by plant-growth promoting rhizobacteria is considered to be an important mechanism by which these bacteria promote plant growth. In this study the importance of indole-3-acetic acid (IAA) produced by Azospirillum brasilense Sp245 in the observed plant growth stimulation was investigated by using Sp245 strains genetically modified in IAA production. Firstly wild-type A. brasilense Sp245 and an ipdC knock-out mutant which produces only 10% of wild-type IAA levels (Vande Broek et al., J Bacteriol 181:1338–1342, 1999) were compared in a greenhouse inoculation experiment for a number of plant parameters, thereby clearly demonstrating the IAA effect in plant growth promotion. Secondly, the question was addressed whether altering expression of the ipdC gene, encoding the key enzyme for IAA biosynthesis in A. brasilense, could also contribute to plant growth promotion. For that purpose, the endogenous promoter of the ipdC gene was replaced by either a constitutive or a plant-inducible promoter and both constructs were introduced into the wild-type strain. Based on a greenhouse inoculation experiment it was found that the introduction of these recombinant ipdC constructs could further improve the plant-growth promoting effect of A. brasilense. These data support the possibility of constructing Azospirillum strains with better performance in plant growth promotion.  相似文献   
519.
Efficient N2-fixing Leguminosae nodulating bacteria resistant to As may facilitate plant growth on As-contaminated sites. In order to identify bacteria holding these features, 24 strains were isolated from nodules of the trap species Crotalaria spectabilis (12) and Stizolobium aterrimum (12) growing on an As-contaminated gold mine site. 16S rRNA gene sequencing revealed that most of the strains belonged to the group of α-Proteobacteria, being representatives of the genera Bradyrhizobium, Rhizobium, Inquilinus, Labrys, Bosea, Starkeya, and Methylobacterium. Strains of the first four genera showed symbiotic efficiency with their original host, and demonstrated in vitro specific plant-growth-promoting (PGP) traits (production of organic acids, indole-3-acetic-acid and siderophores, 1-aminocyclopropane-1-carboxylate deaminase activity, and Ca3(PO4)2 solubilization), and increased resistance to As, Zn, and Cd. In addition, these strains and some type and reference rhizobia strains exhibited a wide resistance spectrum to β-lactam antibiotics. Both intrinsic PGP abilities and multi-element resistance of rhizobia are promising for exploiting the symbiosis with different legume plants on trace-element-contaminated soils.  相似文献   
520.

Background

Neurofibromatosis 1 (NF1), a common autosomal dominant disorder, was shown in one study to be associated with a 15-year decrease in life expectancy. However, data on mortality in NF1 are limited. Our aim was to evaluate mortality in a large retrospective cohort of NF1 patients seen in France between 1980 and 2006.

Methods

Consecutive NF1 patients referred to the National French Referral Center for Neurofibromatoses were included. The standardized mortality ratio (SMR) with its 95% confidence interval (CI) was calculated as the ratio of observed over expected numbers of deaths. We studied factors associated with death and causes of death.

Results

Between 1980 and 2006, 1895 NF1 patients were seen. Median follow-up was 6.8 years (range, 0.4-20.6). Vital status was available for 1226 (65%) patients, of whom 1159 (94.5%) survived and 67 (5.5%) died. Overall mortality was significantly increased in the NF1 cohort (SMR, 2.02; CI, 1.6-2.6; P < 10-4). The excess mortality occurred among patients aged 10 to 20 years (SMR, 5.2; CI, 2.6-9.3; P < 10-4) and 20 to 40 years (SMR, 4.1; 2.8-5.8; P < 10-4). Significant excess mortality was found in both males and females. In the 10-20 year age group, females had a significant increase in mortality compared to males (SMR, 12.6; CI, 5.7-23.9; and SMR, 1.8; CI, 0.2-6.4; respectively). The cause of death was available for 58 (86.6%) patients; malignant nerve sheath tumor was the main cause of death (60%).

Conclusions

We found significantly increased SMRs indicating excess mortality in NF1 patients compared to the general population. The definitive diagnosis of NF1 in all patients is a strength of our study, and the high rate of death related to malignant transformation is consistent with previous work. The retrospective design and hospital-based recruitment are limitations of our study. Mortality was significantly increased in NF1 patients aged 10 to 40 years and tended to be higher in females than in males.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号