首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   590篇
  免费   38篇
  2023年   4篇
  2022年   9篇
  2021年   24篇
  2020年   17篇
  2019年   20篇
  2018年   18篇
  2017年   13篇
  2016年   22篇
  2015年   42篇
  2014年   42篇
  2013年   49篇
  2012年   56篇
  2011年   55篇
  2010年   26篇
  2009年   35篇
  2008年   32篇
  2007年   33篇
  2006年   33篇
  2005年   24篇
  2004年   21篇
  2003年   16篇
  2002年   14篇
  2001年   5篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1986年   2篇
  1976年   1篇
  1969年   1篇
排序方式: 共有628条查询结果,搜索用时 15 毫秒
31.
Protein–protein interactions (PPIs) represent an essential aspect of plant systems biology. Identification of key protein players and their interaction networks provide crucial insights into the regulation of plant developmental processes and into interactions of plants with their environment. Despite the great advance in the methods for the discovery and validation of PPIs, still several challenges remain. First, the PPI networks are usually highly dynamic, and the in vivo interactions are often transient and difficult to detect. Therefore, the properties of the PPIs under study need to be considered to select the most suitable technique, because each has its own advantages and limitations. Second, besides knowledge on the interacting partners of a protein of interest, characteristics of the interaction, such as the spatial or temporal dynamics, are highly important. Hence, multiple approaches have to be combined to obtain a comprehensive view on the PPI network present in a cell. Here, we present the progress in commonly used methods to detect and validate PPIs in plants with a special emphasis on the PPI features assessed in each approach and how they were or can be used for the study of plant interactions with their environment.  相似文献   
32.
33.
34.
The influence of bacterivorous nematodes (Diplolaimelloides meyli, Diplolaimelloides oschei, Diplolaimella dievengatensis, Panagrolaimus paetzoldi) on the development of a bacterial community growing on decaying cordgrass detritus was studied in laboratory microcosm experiments. Cordgrass leaves were incubated on a sediment surface with a natural bacterial mixture containing bacteria from sediment, cordgrass detritus and habitat water. The four nematode species were applied separately to the microcosms; controls remained without nematodes. Samples were taken seven times over a 65-day period. The bacterial community structure was analysed by means of DGGE of the 16S rRNA genes. Multi Dimensional Scaling showed grouping of the samples per treatment. Analysis of Similarities indicated that the differences between treatments were significantly larger than differences within treatments. Our results suggest that nematodes can have a significant structuring top-down influence on the 'pool' of bacteria growing on the detritus, even at low densities. Dissimilarities were similar between all treatments. Differences in bacterial community composition within the treatments with monhysterids (D. meyli, D. oschei and D. dievengatensis) can be explained by species-specific food preferences. Panagrolaimus paetzoldi on the other hand feeds unselectively, and thus affects the bacterial community differently. A top-down effect of the nematodes on the diversity of the bacterial community was only evident under high grazing pressure, i.e. in the presence of P. paetzoldi.  相似文献   
35.
Glutathione transferases (GSTs) are a family of enzymes that detoxify electrophilic compounds, such as carcinogens or drugs, by conjugating them to glutathione. The enzymes have contributed to the understanding of protein structure, due to large differences in amino acid sequence within the family, yet similar architecture and folding. Our objective was to conduct a systematic survey of GSTP1 polymorphisms and their function. Nearly all variants detected were known polymorphisms: IVS4+13C>A; Ile105Val; Ala114Val; and g.2596T>C (Ser185Ser). However, we also found a novel Phe151Leu substitution in an African-American subject (1 out of 111). Kinetic parameters for the conjugation reaction with 1-chloro-2,4-dinitrobenzene (CDNB) were determined for the novel variant enzyme purified via heterologous expression in Escherichia coli. Five substrates were used for measurement of specific activities, including isothiocyanate compounds that occur in cruciferous vegetables (benzylisothiocyanate, phenethylisothiocyanate, and sulforaphane). Such isothiocyanate substrates are potential cancer chemopreventive agents that are conjugated by GSTs. No major change in kinetic parameters was observed. However, the half-life at 50 degrees C of the Leu 151 enzyme was reduced to 12 min, as compared to 28 min for the Phe 151 enzyme. Residue 151 is located at the N-terminus of helix alpha6 in GST motif II, surrounded by hydrophobic residues, and near the conserved "hydrophobic staple" and N-capping box motifs. These local structural elements aid in formation of helix alpha6 and promote proper folding and protein stability. Analysis of the three-dimensional structure showed that substitution of Phe 151 with Leu produces a hydrophobic cavity in the GSTP1 core, thereby destabilizing its structure. Phe151Leu represents one of the first-described allelic variations in a protein folding motif.  相似文献   
36.
Towards a computational model for -1 eukaryotic frameshifting sites   总被引:3,自引:0,他引:3  
MOTIVATION: Unconventional decoding events are now well acknowledged, but not yet well formalized. In this study, we present a bioinformatics analysis of eukaryotic -1 frameshifting, in order to model this event. RESULTS: A consensus model has already been established for -1 frameshifting sites. Our purpose here is to provide new constraints which make the model more precise. We show how a machine learning approach can be used to refine the current model. We identify new properties that may be involved in frameshifting. Each of the properties found was experimentally validated. Initially, we identify features of the overall model that are to be simultaneously satisfied. We then focus on the following two components: the spacer and the slippery sequence. As a main result, we point out that the identity of the primary structure of the so-called spacer is of great importance. AVAILABILITY: Sequences of the oligonucleotides in the functional tests are available at http://www.igmors.u-psud.fr/rousset/bioinformatics/.  相似文献   
37.
38.

Objectives

The marine benthic nitrogen cycle is affected by both the presence and activity of macrofauna and the diversity of N-cycling microbes. However, integrated research simultaneously investigating macrofauna, microbes and N-cycling is lacking. We investigated spatio-temporal patterns in microbial community composition and diversity, macrofaunal abundance and their sediment reworking activity, and N-cycling in seven subtidal stations in the Southern North Sea.

Spatio-Temporal Patterns of the Microbial Communities

Our results indicated that bacteria (total and β-AOB) showed more spatio-temporal variation than archaea (total and AOA) as sedimentation of organic matter and the subsequent changes in the environment had a stronger impact on their community composition and diversity indices in our study area. However, spatio-temporal patterns of total bacterial and β-AOB communities were different and related to the availability of ammonium for the autotrophic β-AOB. Highest bacterial richness and diversity were observed in June at the timing of the phytoplankton bloom deposition, while richness of β-AOB as well as AOA peaked in September. Total archaeal community showed no temporal variation in diversity indices.

Macrofauna, Microbes and the Benthic N-Cycle

Distance based linear models revealed that, independent from the effect of grain size and the quality and quantity of sediment organic matter, nitrification and N-mineralization were affected by respectively the diversity of metabolically active β-AOB and AOA, and the total bacteria, near the sediment-water interface. Separate models demonstrated a significant and independent effect of macrofaunal activities on community composition and richness of total bacteria, and diversity indices of metabolically active AOA. Diversity of β-AOB was significantly affected by macrofaunal abundance. Our results support the link between microbial biodiversity and ecosystem functioning in marine sediments, and provided broad correlative support for the hypothesis that this relationship is modulated by macrofaunal activity. We hypothesized that the latter effect can be explained by their bioturbating and bio-irrigating activities, increasing the spatial complexity of the biogeochemical environment.  相似文献   
39.
Repair of damaged plasma membrane in eukaryotic cells is largely dependent on the binding of annexin repair proteins to phospholipids. Changing the biophysical properties of the plasma membrane may provide means to compromise annexin-mediated repair and sensitize cells to injury. Since, cancer cells experience heightened membrane stress and are more dependent on efficient plasma membrane repair, inhibiting repair may provide approaches to sensitize cancer cells to plasma membrane damage and cell death. Here, we show that derivatives of phenothiazines, which have widespread use in the fields of psychiatry and allergy treatment, strongly sensitize cancer cells to mechanical-, chemical-, and heat-induced injury by inhibiting annexin-mediated plasma membrane repair. Using a combination of cell biology, biophysics, and computer simulations, we show that trifluoperazine acts by thinning the membrane bilayer, making it more fragile and prone to ruptures. Secondly, it decreases annexin binding by compromising the lateral diffusion of phosphatidylserine, inhibiting the ability of annexins to curve and shape membranes, which is essential for their function in plasma membrane repair. Our results reveal a novel avenue to target cancer cells by compromising plasma membrane repair in combination with noninvasive approaches that induce membrane injuries.  相似文献   
40.
In primary hyperparathyroidism (PHPT), excess PTH secretion by adenomatous or hyperplastic parathyroid glands leads to elevated serum [Ca(2+)]. Patients present complex symptoms of muscular fatigue, various neuropsychiatric, neuromuscular, and cardiovascular manifestations, and, in advanced disease, kidney stones and metabolic bone disease. Our objective was to characterize changes in muscle and hematopoietic gene expression in patients with reversible mild PHPT after parathyroidectomy and possibly link molecular pathology to symptoms. Global mRNA profiling using Affymetrix gene chips was carried out in biopsies obtained before and 1 yr after parathyroidectomy in seven patients discovered by routine blood [Ca(2+)] screening. The tissue distribution of PTH receptor (PTHR1 and PTHR2) mRNAs were quantitated using real-time RT-PCR in unrelated persons to define PTH target tissues. Of about 10,000 expressed genes, 175 muscle, 169 hematological, and 99 bone-associated mRNAs were affected. Notably, the major part of muscle-related mRNAs was increased whereas hematological mRNAs were predominantly decreased during disease. Functional and molecular network analysis demonstrated major alterations of several tissue characteristic groups of mRNAs as well as those belonging to common cell signaling and major metabolic pathways. PTHR1 and PTHR2 mRNAs were more abundantly expressed in muscle and brain than in hematopoietic cells. We suggest that sustained stimulation of PTH receptors present in brain, muscle, and hematopoietic cells have to be considered as one independent, important cause of molecular disease in PHPT leading to profound alterations in gene expression that may help explain symptoms like muscle fatigue, cardiovascular pathology, and precipitation of psychiatric illness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号