首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   7篇
  国内免费   5篇
  91篇
  2024年   1篇
  2023年   1篇
  2022年   8篇
  2021年   3篇
  2019年   2篇
  2018年   8篇
  2017年   3篇
  2016年   1篇
  2015年   5篇
  2014年   6篇
  2013年   3篇
  2012年   6篇
  2011年   6篇
  2010年   6篇
  2009年   5篇
  2008年   7篇
  2007年   7篇
  2006年   7篇
  2005年   4篇
  2001年   1篇
  1988年   1篇
排序方式: 共有91条查询结果,搜索用时 15 毫秒
31.
Protein translation is a critical regulatory event involved in nearly all physiological and pathological processes. Eukaryotic translation initiation factors are dedicated to translation initiation, the most highly regulated stage of protein synthesis. Eukaryotic translation initiation factor 4G2 (eIF4G2, also called p97, NAT1 and DAP5), an eIF4G family member that lacks the binding sites for 5′ cap binding protein eIF4E, is widely considered to be a key factor for internal ribosome entry sites (IRESs)‐mediated cap‐independent translation. However, recent findings demonstrate that eIF4G2 also supports many other translation initiation pathways. In this review, we summarize the role of eIF4G2 in a variety of cap‐independent and ‐dependent translation initiation events. Additionally, we also update recent findings regarding the role of eIF4G2 in apoptosis, cell survival, cell differentiation and embryonic development. These studies reveal an emerging new picture of how eIF4G2 utilizes diverse translational mechanisms to regulate gene expression.

Eukaryotic translation initiation factors 4G2 (eIF4G2) participates in diverse translation initiation, including translation driven by internal ribosome entry sites (IRESs), cap‐independent translation enhancers (CITEs), and N6‐methyladenosine (m6A), as well as in non‐canonical eIF4F‐independent cap‐dependent translation and canonical cap‐dependent scanning translation initiation. Through the translational mechanisms to regulate gene expression, eIF4G2 is significantly involved in apoptosis, cell survival, cell differentiation, and embryonic development processes.  相似文献   
32.
33.
34.

Background

A previously reported expression signature of three genes (IGFBP3, F3 and VGLL3) was shown to have potential prognostic value in estimating overall and cancer-specific survivals at diagnosis of prostate cancer in a pilot cohort study using freshly frozen Fine Needle Aspiration (FNA) samples.

Methods

We carried out a new cohort study with 241 prostate cancer patients diagnosed from 2004–2007 with a follow-up exceeding 6 years in order to verify the prognostic value of gene expression signature in formalin fixed paraffin embedded (FFPE) prostate core needle biopsy tissue samples. The cohort consisted of four patient groups with different survival times and death causes. A four multiplex one-step RT-qPCR test kit, designed and optimized for measuring the expression signature in FFPE core needle biopsy samples, was used. In archive FFPE biopsy samples the expression differences of two genes (IGFBP3 and F3) were measured. The survival time predictions using the current clinical parameters only, such as age at diagnosis, Gleason score, PSA value and tumor stage, and clinical parameters supplemented with the expression levels of IGFBP3 and F3, were compared.

Results

When combined with currently used clinical parameters, the gene expression levels of IGFBP3 and F3 are improving the prediction of survival time as compared to using clinical parameters alone.

Conclusion

The assessment of IGFBP3 and F3 gene expression levels in FFPE prostate cancer tissue would provide an improved survival prediction for prostate cancer patients at the time of diagnosis.  相似文献   
35.
Trees have an abundant network of channels for the multiphase transport of water, ions, and nutrients. Recent studies have revealed that multiphase transport of ions, oxygen (O2) gas, and electrons also plays a fundamental role in lithium–oxygen (Li–O2) batteries. The similarity in transport behavior of both systems is the inspiration for the development of Li–O2 batteries from natural wood featuring noncompetitive and continuous individual pathways for ions, O2, and electrons. Using a delignification treatment and a subsequent carbon nanotube/Ru nanoparticle coating process, one is able to convert a rigid and electrically insulating wood membrane into a flexible and electrically conductive material. The resulting cell walls are comprised of cellulose nanofibers with abundant nanopores, which are ideal for Li+ ion transport, whereas the unperturbed wood lumina act as a pathway for O2 gas transport. The noncompetitive triple pathway design endows the wood‐based cathode with a low overpotential of 0.85 V at 100 mA g?1, a record‐high areal capacity of 67.2 mAh cm?2, a long cycling life of 220 cycles, and superior electrochemical and mechanical stability. The integration of such excellent electrochemical performance, outstanding mechanical flexibility, and renewable yet cost‐effective starting materials via a nature‐inspired design opens new opportunities for developing portable energy storage devices.  相似文献   
36.
摘要:【目的】 利用大肠杆菌表达系统制备人乳头瘤病毒11型病毒样颗粒(HPV11 VLPs),并对其免疫原性和所诱导中和抗体的型交叉反应性进行研究。 【方法】 在大肠杆菌ER2566中非融合表达HPV11-L1蛋白,并通过离子交换层析,疏水相互作用层析其进行纯化。纯化后的HPV11-L1经体外组装形成病毒样颗粒,通过动态光散射,透射电镜检测其形态,并通过多种HPV型别假病毒中和实验评价HPV11 VLPs的免疫原性及型交叉反应性。 【结果】 HPV11-L1蛋白在大肠杆菌中可以以可溶形式表达。经过硫酸铵沉  相似文献   
37.

Background

Neuroblastoma is the most common pediatric malignancy with heterogeneous clinical behaviors, ranging from spontaneous regression to aggressive progression. Many studies have identified aberrations related to the pathogenesis and prognosis, broadly classifying neuroblastoma patients into high- and low-risk groups, but predicting tumor progression and clinical management of high-risk patients remains a big challenge.

Results

We integrate gene-level expression, array-based comparative genomic hybridization and functional gene-interaction network of 145 neuroblastoma patients to detect potential driver genes. The drivers are summarized into a driver-gene score (DGscore) for each patient, and we then validate its clinical relevance in terms of association with patient survival. Focusing on a subset of 48 clinically defined high-risk patients, we identify 193 recurrent regions of copy number alterations (CNAs), resulting in 274 altered genes whose copy-number gain or loss have parallel impact on the gene expression. Using a network enrichment analysis, we detect four common driver genes, ERCC6, HECTD2, KIAA1279, EMX2, and 66 patient-specific driver genes. Patients with high DGscore, thus carrying more copy-number-altered genes with correspondingly up- or down-regulated expression and functional implications, have worse survival than those with low DGscore (P?=?0.006). Furthermore, Cox proportional-hazards regression analysis shows that, adjusted for age, tumor stage and MYCN amplification, DGscore is the only significant prognostic factor for high-risk neuroblastoma patients (P?=?0.008).

Conclusions

Integration of genomic copy number alteration, expression and functional interaction-network data reveals clinically relevant and prognostic putative driver genes in high-risk neuroblastoma patients. The identified putative drivers are potential drug targets for individualized therapy.

Reviewers

This article was reviewed by Armand Valsesia, Susmita Datta and Aleksandra Gruca.
  相似文献   
38.
39.
Versican is one of the major extracellular matrix (ECM) proteins in the brain. ECM molecules and their cleavage products critically regulate the growth and arborization of neurites, hence adjusting the formation of neural networks. Recent findings have revealed that peptide fragments containing the versican C terminus (G3 domain) are present in human brain astrocytoma. The present study demonstrated that a versican G3 domain enhanced cell attachment, neurite growth, and glutamate receptor-mediated currents in cultured embryonic hippocampal neurons. In addition, the G3 domain intensified dendritic spines, increased the clustering of both synaptophysin and the glutamate receptor subunit GluR2, and augmented excitatory synaptic activity. In contrast, a mutated G3 domain lacking the epidermal growth factor (EGF)-like repeats (G3deltaEGF) had little effect on neurite growth and glutamatergic function. Treating the neurons with the G3-conditioned medium rapidly increased the levels of phosphorylated EGF receptor (pEGFR) and phosphorylated extracellular signal-regulated kinase (pERK), indicating an activation of EGFR-mediated signaling pathways. Blockade of EGFR prevented the G3-induced ERK activation and suppressed the G3-provoked enhancement of neurite growth and glutamatergic function but failed to block the G3-mediated enhancement of cell attachment. These combined results indicate that the versican G3 domain regulates neuronal attachment, neurite outgrowth, and synaptic function of hippocampal neurons via EGFR-dependent and -independent signaling pathway(s). Our findings suggest a role for ECM proteolytic products in neural development and regeneration.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号