首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1206篇
  免费   186篇
  2021年   14篇
  2019年   8篇
  2018年   8篇
  2016年   24篇
  2015年   35篇
  2014年   37篇
  2013年   37篇
  2012年   40篇
  2011年   47篇
  2010年   42篇
  2009年   26篇
  2008年   54篇
  2007年   54篇
  2006年   43篇
  2005年   34篇
  2004年   46篇
  2003年   35篇
  2002年   38篇
  2001年   50篇
  2000年   45篇
  1999年   30篇
  1998年   18篇
  1997年   15篇
  1996年   17篇
  1995年   11篇
  1994年   20篇
  1993年   21篇
  1992年   27篇
  1991年   40篇
  1990年   31篇
  1989年   31篇
  1988年   21篇
  1987年   33篇
  1986年   28篇
  1985年   29篇
  1984年   19篇
  1983年   27篇
  1982年   15篇
  1981年   8篇
  1980年   17篇
  1979年   23篇
  1978年   15篇
  1977年   16篇
  1976年   9篇
  1975年   12篇
  1974年   17篇
  1972年   12篇
  1971年   10篇
  1970年   10篇
  1968年   9篇
排序方式: 共有1392条查询结果,搜索用时 15 毫秒
71.
The fungal cell wall constitutes an important target for the development of antifungal drugs, because of its central role in morphogenesis, development and determination of fungal-specific molecular features. Fungal walls are characterized by a network of interconnected glycoproteins and polysaccharides, namely α-, β-glucans and chitin. Cell walls promptly and dynamically respond to environmental stimuli by a signaling mechanism, which triggers, among other responses, modulations in wall biosynthetic genes’ expression. Despite the absence of cellulose in the wall of the model filamentous fungus Aspergillus nidulans, we found in this study that fungal growth, spore germination and morphology are affected by the addition of the cellulose synthase inhibitor dichlobenil. Expression analysis of selected genes putatively involved in cell wall biosynthesis, carried out at different time points of drug exposure (i.e. 0, 1, 3, 6 and 24 h), revealed increased expression for the putative mixed linkage β-1,3;1,4 glucan synthase celA together with the β-1,3-glucan synthase fksA and the Rho-related GTPase rhoA. We also compared these data with the response to Congo Red, a known plant/fungal drug affecting both chitin and cellulose biosynthesis. The two drugs exerted different effects at the cell wall level, as shown by gene expression analysis and the ultrastructural features observed through atomic force microscopy and scanning electron microscopy. Although the concentration of dichlobenil required to affect growth of A. nidulans is approximately 10-fold higher than that required to inhibit plant cellulose biosynthesis, our work for the first time demonstrates that a cellulose biosynthesis inhibitor affects fungal growth, changes fungal morphology and expression of genes connected to fungal cell wall biosynthesis.  相似文献   
72.
Biotherapeutics are often produced in non-human host cells like Escherichia coli, yeast, and various mammalian cell lines. A major focus of any therapeutic protein purification process is to reduce host cell proteins to an acceptable low level. In this study, various E. coli host cell proteins were identified at different purifications steps by HPLC fractionation, SDS-PAGE analysis, and tryptic peptide mapping combined with online liquid chromatography mass spectrometry (LC-MS). However, no host cell proteins could be verified by direct LC-MS analysis of final drug substance material. In contrast, the application of affinity enrichment chromatography prior to comprehensive LC-MS was adequate to identify several low abundant host cell proteins at the final drug substance level. Bacterial alkaline phosphatase (BAP) was identified as being the most abundant host cell protein at several purification steps. Thus, we firstly established two different assays for enzymatic and immunological BAP monitoring using the cobas® technology. By using this strategy we were able to demonstrate an almost complete removal of BAP enzymatic activity by the established therapeutic protein purification process. In summary, the impact of fermentation, purification, and formulation conditions on host cell protein removal and biological activity can be conducted by monitoring process-specific host cell proteins in a GMP-compatible and high-throughput (> 1000 samples/day) manner.  相似文献   
73.
Epoxiconazole (CAS‐No. 133855‐98‐8) was recently shown to cause both a marked depletion of maternal estradiol blood levels and a significantly increased incidence of late fetal mortality when administered to pregnant rats throughout gestation (GD 7–18 or 21); estradiol supplementation prevented this epoxiconazole effect in rats (Stinchcombe et al., 2013), indicating that epoxiconazole‐mediated estradiol depletion is a critical key event for induction of late fetal resorptions in rats. For further elucidation of the mode of action, the placentas from these modified prenatal developmental toxicity experiments with 23 and 50 mg/kg bw/d epoxiconazole were subjected to a detailed histopathological examination. This revealed dose‐dependent placental degeneration characterized by cystic dilation of maternal sinuses in the labyrinth, leading to rupture of the interhemal membrane. Concomitant degeneration occurred in the trophospongium. Both placentas supporting live fetuses and late fetal resorptions were affected; the highest degree of severity was observed in placentas with late resorptions. Placental degeneration correlated with a severe decline in maternal serum estradiol concentration. Supplementation with 0.5 and 1.0 μg of the synthetic estrogen estradiol cyclopentylpropionate per day reduced the severity of the degeneration in placentas with live fetuses. The present study demonstrates that both the placental degeneration and the increased incidence of late fetal resorptions are due to decreased levels of estrogen, since estrogen supplementation ameliorates the former and abolishes the latter. Birth Defects Res (Part B) 98:208–221, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
74.
Epoxiconazole, a triazole‐based fungicide, was tested in toxicokinetic, prenatal and pre‐postnatal toxicity studies in guinea pigs, following oral (gavage) administration at several dose levels (high dose: 90 mg/kg body weight per day). Maternal toxicity was evidenced by slightly increased abortion rates and by histopathological changes in adrenal glands, suggesting maternal stress. No compound‐related increase in the incidence of malformations or variations was observed in the prenatal study. In the pre‐postnatal study, epoxiconazole did not adversely affect gestation length, parturition, or postnatal growth and development. Administration of epoxiconazole did not alter circulating estradiol levels. Histopathological examination of the placentas did not reveal compound‐related effects. The results in guinea pigs are strikingly different to those observed in pregnant rats, in which maternal estrogen depletion, pathological alteration of placentas, increased gestation length, late fetal death, and dystocia were observed after administration of epoxiconazole. In the studies reported here, analysis of maternal plasma concentrations and metabolism after administration of radiolabeled epoxiconazole demonstrated that the different results in rats and guinea pigs were not due to different exposures of the animals. A comprehensive comparison of hormonal regulation of pregnancy and birth in murid rodents and primates indicates that the effects on pregnancy and parturition observed in rats are not applicable to humans. In contrast, the pregnant guinea pig shares many similarities to pregnant humans regarding hormonal regulation and is therefore considered to be a suitable species for extrapolation of related effects to humans. Birth Defects Res (Part B) 98:230–246, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
75.
Repair success for injuries to the flexor tendon in the hand is often limited by the in vivo behaviour of the suture used for repair. Common problems associated with the choice of suture material include increased risk of infection, foreign body reactions, and inappropriate mechanical responses, particularly decreases in mechanical properties over time. Improved suture materials are therefore needed. As high-performance materials with excellent tensile strength, spider silk fibres are an extremely promising candidate for use in surgical sutures. However, the mechanical behaviour of sutures comprised of individual silk fibres braided together has not been thoroughly investigated. In the present study, we characterise the maximum tensile strength, stress, strain, elastic modulus, and fatigue response of silk sutures produced using different braiding methods to investigate the influence of braiding on the tensile properties of the sutures. The mechanical properties of conventional surgical sutures are also characterised to assess whether silk offers any advantages over conventional suture materials. The results demonstrate that braiding single spider silk fibres together produces strong sutures with excellent fatigue behaviour; the braided silk sutures exhibited tensile strengths comparable to those of conventional sutures and no loss of strength over 1000 fatigue cycles. In addition, the braiding technique had a significant influence on the tensile properties of the braided silk sutures. These results suggest that braided spider silk could be suitable for use as sutures in flexor tendon repair, providing similar tensile behaviour and improved fatigue properties compared with conventional suture materials.  相似文献   
76.
Starting in 1991, the advance of Tyr-recombinases Flp and Cre enabled superior strategies for the predictable insertion of transgenes into compatible target sites of mammalian cells. Early approaches suffered from the reversibility of integration routes and the fact that co-introduction of prokaryotic vector parts triggered uncontrolled heterochromatization. Shortcomings of this kind were overcome when Flp-Recombinase Mediated Cassette Exchange entered the field in 1994. RMCE enables enhanced tag-and-exchange strategies by precisely replacing a genomic target cassette by a compatible donor construct. After “gene swapping” the donor cassette is safely locked in, but can nevertheless be re-mobilized in case other compatible donor cassettes are provided (“serial RMCE”). These features considerably expand the options for systematic, stepwise genome modifications. The first decade was dominated by the systematic generation of cell lines for biotechnological purposes. Based on the reproducible expression capacity of the resulting strains, a comprehensive toolbox emerged to serve a multitude of purposes, which constitute the first part of this review. The concept per se did not, however, provide access to high-producer strains able to outcompete industrial multiple-copy cell lines. This fact gave rise to systematic improvements, among these certain accumulative site-specific integration pathways. The exceptional value of RMCE emerged after its entry into the stem cell field, where it started to contribute to the generation of induced pluripotent stem (iPS-) cells and their subsequent differentiation yielding a variety of cell types for diagnostic and therapeutic purposes. This topic firmly relies on the strategies developed in the first decade and can be seen as the major ambition of the present article. In this context an unanticipated, potent property of serial Flp-RMCE setups concerns the potential to re-open loci that have served to establish the iPS status before the site underwent the obligatory silencing process. Other relevant options relate to the introduction of composite Flp-recognition target sites (“heterospecific FRT-doublets”), into the LTRs of lentiviral vectors. These “twin sites” enhance the safety of iPS re-programming and -differentiation as they enable the subsequent quantitative excision of a transgene, leaving behind a single “FRT-twin”. Such a strategy combines the established expression potential of the common retro- and lentiviral systems with options to terminate the process at will. The remaining genomic tag serves to identify and characterize the insertion site with the goal to identify genomic “safe harbors” (GOIs) for re-use. This is enabled by the capacity of “FRT-twins” to accommodate any incoming RMCE-donor cassette with a compatible design.  相似文献   
77.
Invasive species may undergo rapid change as they invade. Native species persisting in invaded areas may also experience rapid change over this short timescale relative to native populations in uninvaded areas. We investigated the response of the native Achillea millefolium to soil from Holcus lanatus‐invaded and uninvaded areas, and we sought to determine whether differential responses between A. millefolium from invaded (invader experienced) and uninvaded (invader naïve) areas were mediated by soil community changes. Plants grown from seed from experienced and naïve areas responded differently to invaded and uninvaded soil with respect to germination time, biomass, and height. Overall, experienced plants grew faster and taller than their naïve counterparts. Naïve native plants showed negative feedbacks with their home soil and positive feedbacks with invaded soil; experienced plants were less responsive to soil differences. Our results suggest that native plants naïve to invasion may be more sensitive to soil communities than experienced plants, consistent with recent studies. While differences between naïve and experienced plants are transgenerational, our design cannot differentiate between differences that are genetically based, plastic, or both. Regardless, our results highlight the importance of seed source and population history in restoration, emphasizing the restoration potential of experienced seed sources.  相似文献   
78.
Photoinduced charge generation (PCG) dynamics are notoriously difficult to correlate with specific molecular properties in device relevant polymer:fullerene organic photovoltaic blend films due to the highly complex nature of the solid state blend morphology. Here, this study uses six judiciously selected trifluoromethylfullerenes blended with the prototypical polymer poly(3‐hexylthiophene) and measure the PCG dynamics in 50 fs–500 ns time scales with time‐resolved microwave conductivity and femtosecond transient absorption spectroscopy. The isomeric purity and thorough chemical characterization of the fullerenes used in this study allow for a detailed correlation between molecular properties, driving force, local intermolecular electronic coupling and, ultimately, the efficiency of PCG yield. The findings show that the molecular design of the fullerene not only determines inter‐fullerene electronic coupling, but also influences the decay dynamics of free holes in the donor phase even when the polymer microstructure remains unchanged.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号