首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   2篇
  国内免费   2篇
  2023年   1篇
  2021年   1篇
  2015年   2篇
  2010年   4篇
  2008年   3篇
  2007年   1篇
  2005年   1篇
  2004年   9篇
  2003年   5篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
排序方式: 共有41条查询结果,搜索用时 140 毫秒
31.
Summary The behavior of organelle nucleoids in the generative cell was examined at the second (pollen grain) mitosis by epifluorescence microscopy after staining with 4,6-diamidino-2-phenylindole (DAPI) inOenothera biennis. TheO. biennis generative cell contained a large number of organelle nucleoids distributed randomly in the cytoplasm before mitosis. The epifluorescence images of the nucleoids could be classified distinctly into two groups which corresponded to plastid nucleoids (pt-nucleoids) and mitochondrial nucleoids (mt-nucleoids). Discrimination between pt- and mt-nucleoids was carried out with the aid of DNA immunogold electron microscopy. At metaphase, both pt- and mt-nucleoids migrated to the pole regions of the generative cell. After mitosis, organelle nucleoids in both of the sperm cells scattered in the cytoplasm again. A quantitative examination of pt-nucleoids on 202 pairs of sperm cells showed that the leading sperm cell (Svn) contained 0–39 pt-nucleoids (19.0 ± 7.4) and the trailing sperm cell (Sua) contained 0–40 pt-nucleoids (15.4 ± 6.5). For mt-nucleoids, examination of 28 pairs of sperm cells showed that Svn contained 5–32 mt-nucleoids (14.5 ± 6.8) and Sua contained 6–30 mt-nucleoids (13.4 ±7.5). These results showed that (1) the number of organelle nucleoids per sperm cell varied considerably in the cells studied; (2) quantitative difference in pt- and mt-nucleoids between Svn and Sua could occur in some gametophytes studied; but (3) it was unlikely that there was any pre-differentiational cytoplasm localization and essential sperm heteromorphy with respect to organelle nucleoid content in the gametophyte population.  相似文献   
32.
Summary The coleoptile ofOryza sativa develops, grows and ages within 4 days that follow imbibition. It is, thus, a very useful system for experimental analysis of the life cycle of organelles, for example, the development, growth and aging of plastids in higher plants. We examined the behavior and levels of DNA and chlorophyll in the plastid by epifluorescence microscopy after staining with 4-6-diamidino-2-phenylindole (DAPI), and by fluorimetry with a video-intensified-photon counting system (VIMPCS). The whitish yellow coleoptile appeared soon after imbibition and, between the first 24 and 60 h that followed imbibition, it grew markedly in a longitudinal direction, with concomitant elongation of the cells, and an increase in the volume of plastids and in the amount of DNA in the plastids. The chlorophyll content per plastid began to increase when the coleoptile turned green, 48 h after imbibition, and reached a plateau value when the coleoptile was 3.5 mm in length, 72 h after imbibition. More than 12 h later, the chlorophyll disappeared just before the breakdown of chloroplasts was initiated. Proplastids in young coleoptiles, contained a plastid nucleus which was located in the central area of the plastids and each nucleus consisted of approximately 6 copies of plastid DNA (ptDNA). The number of copies of ptDNA per plastid increased gradually, with a concomitant increase in the volume of the plastids after imbibition, and reached approximately 130 times the value in the young proplastids, 60 h after imbibition, when the plastid developed into a chloroplast. However, each plastid nucleus did not scatter throughout the entire interior region of each chloroplast. The disappearance of each plastid nucleus occurred more than 12 h before the degeneration of the chloroplasts. The number of plastids per cell increased from 10 to 15 in young coleoptiles within 12 h after imbibition. Yet the number remained constant throughout subsequent growth and aging of the coleoptile. Thus the preferential reduction in the amount of chloroplast DNA was not due to the division of the plastid but could, perhaps, be associated directly with the aging of the cells of the coleoptile which precedes senescence of the coleoptiles.  相似文献   
33.
 Mature Jasminum officinale and J. nudiflorum pollen grains were stained with 4′,6-diamidino-2-phenylindole (DAPI) and examined by epifluorescence microscopy. The pollen grains were found to be trinucleate, and the sperm cells in both species contained a large number of epifluorescent spots that corresponded to cytoplasmic DNA aggregates (nucleoids). The nucleoids of J. nudiflorum were observed to be dimorphic under the epifluorescence microscope, indicating that the sperm cells might contain both plastid and mitochondrial DNA. The nucleoids of J. officinale presented a similar appearance when stained with DAPI, but electron microscopic examination of the sperm cells revealed that they contained both plastids and mitochondria. When analyzed by DNA immunogold electron microscopy, gold particles were detected on both plastids and mitochondria. These findings demonstrated the preservation of plastid and mitochondrial DNA in mature sperm cells and thus the potential for biparental cytoplasmic inheritance in J. officinale and J. nudiflorum. Received: 8 August 1997 / Revision accepted: 25 February 1998  相似文献   
34.
通过电子显微镜观察、DNA断裂检测及类似半胱氨酸蛋白酶(caspase-like proteases,CLPs)降解检测等技术,对杜仲(Eucommia ulmoides Oliv.)次生木质部分化过程的细胞编程死亡进行了研究.分化中的次生木质部细胞总DNA凝胶电泳检测到DNA ladder,并通过TUNEL检测进一步确定了DNA被降解.Western blot结果表明;caspase-8和caspase-3状蛋白酶(caspase-8-和caspase-3-like proteases,CLPs)及多聚ADP-核糖聚合酶(poly(ADP-ribose)polymerase,PARP)在次生木质部分化过程中被降解.这些研究结果表明,杜仲次生木质部的细胞分化是一个典型的编程性死亡(Programmed cell death,PCD)过程,CLPs可能参与了此过程.  相似文献   
35.
Ty1/copia-like sequences were amplified from mung bean (Vigna radiata (L.) Wilczek) genomic DNA, by PCR with degenerate oligonucleotide primers corresponding to highly conserved domains in the Ty1/copia-like retrotransposons. PCR fragments of roughly 270 bp were isolated and cloned, and forty clones were sequenced. Thirty-six of the forty clones had unique nucleotide sequences, and eighteen clones had a frameshift, a stop codon, or both. Alignment of the nucleotide sequences indicated that these clones, denoted Tvr, fell into nine subgroups and nine ungrouped sequences. The nucleotide sequence similarity between these elements ranged from 8% to 100%, which indicates high level of sequence heterogeneity among these clones. A phylogenetic analysis comparing these clones with corresponding sequences from other plant species showed that some of the Tvr clones are more closely related to Ty1/copia-like retrotransposons from other species than to other Tvr clones. Dot blot analysis revealed that Ty1/copia-like retrotransposons comprise about 9.3% of the mung bean genome.  相似文献   
36.
It is widely held that organelles inherit from the maternal lineage. However, the plastid genome in quite a few angiosperms appears to be biparentally transmitted. It is unclear how and why biparental inheritance of the genome became activated. Here, we detected widespread occurrence of plastids in the sperm cells (a cellular prerequisite for biparental inheritance) of traditional Caprifoliaceae. Of the 12 genera sampled, the sperm cells of Abelia, Dipelta, Heptacodium, Kolkwitzia, Leycesteria, Linnaea, Lonicera, Symphoricarpos, Triosteum and Weigela possessed inheritable plastids. The other genera, Sambucus and Viburnum, lacked plastids in sperm cells. Interestingly, such exclusion of plastids in the sperm cells of some Caprifoliaceae appeared to be associated with the divergence of Dipsacales phylogeny. Closer examination of Weigela florida revealed that both plastids and plastid DNA were highly duplicated in the generative cells. This implies that the appearance of plastids in sperm cells involved cellular mechanisms. Because such mechanisms must enhance the strength of plastid transmission through the paternal lineage and appear ubiquitous in species exhibiting biparental or potential biparental plastid inheritance, we presume that biparental plastid genetics may be a derived trait in angiosperms. This is consistent with our extended phylogenetic analysis using species with recently discovered modes of potential plastid inheritance. The results show that basal and early angiosperms have maternal plastid transmission, whereas all potential biparental transmission occurs at terminal branches of the tree. Thus, unlike previous studies, we suggest that biparental plastid inheritance in angiosperms was unilaterally converted from the maternal transmission mode during late angiosperm evolution.  相似文献   
37.
利用Ty1/copia类反转录转座子的保守位点设计简并引物,从绿豆(Vignaradiata(L.)Wilczek)基因组中扩增得到了反转录转座子的逆转录酶序列。对扩增得到的约270bp的片段进行分离和克隆,并随机挑选了40个克隆进行测序,结果得到了36个单独的核酸序列,其中18个含有移码突变或终止子。根据序列比对,这些克隆可分为9组以及单个的9种。这40个克隆中,核酸序列相似性从8%到100%,显示出其核酸序列的高度异质性。将这些克隆的核酸序列与来自其他种植物的相应序列进行谱系分析,发现有些克隆与来自其他种植物的相应序列的亲缘关系比这些克隆之间更为接近。斑点杂交显示Ty1/copia反转录转座子约占绿豆基因组的9.3%。  相似文献   
38.
Variegated leaves are often caused by a nuclear recessive mutation in higher plants. Characterization of the gene responsible for variegation has shown to provide several pathways involved in plastid differentiation. Here we describe an Arabidopsis variegated mutant isolated by T-DNA tagging. The mutant displayed green and yellow sectors in all green tissues except for cotyledons. Cells in the yellow sector of the mutant contained both normal-appearing and mutant chloroplasts. The isolated mutant was shown to be an allele of the previously reported mutant, yellow variegated (var2). Cloning and molecular characterization of the VAR2 locus revealed that it potentially encodes a chloroplastic homologue of FtsH, an ATP-dependent metalloprotease that belongs to a large protein family involved in various cellular functions. ftsH-like genes appear to comprise a small gene family in Arabidopsis genome, since at least six homologues were found in addition to VAR2. Dispensability of VAR2 was therefore explained by the redundancy of genes coding for FstHs. In the yellow regions of the mutant leaves, accumulation of photosynthetic protein components in the thylakoid membrane appeared to be impaired. Based on the role of FtsH in a protein degradation pathway in plastids, we propose a possibility that VAR2 is required for plastid differentiation by avoiding partial photooxidation of developing chloroplasts.  相似文献   
39.
杜仲次生木质部分化过程中的细胞编程死亡   总被引:3,自引:0,他引:3  
通过电子显微镜观察、DNA断裂检测及类似半胱氨酸蛋白酶(caspase-like proteases,CLPs)降解检测等技术,对杜仲(Eucommia ulmoides Oliv.)次生木质部分化过程的细胞编程死亡进行了研究。分化中的次生木质部细胞总DNA凝胶电泳检测到DNA ladder,并通过TUNEL检测进一步确定了DNA被降解。Western blot结果表明:caspase-8和caspase-3状蛋白酶(caspase-8-和caspase-3-like proteases,CLPs)及多聚ADP-核糖聚合酶(poly(ADP-ribose) polymerase,PARP)在次生木质部分化过程中被降解。这些研究结果表明,杜仲次生木质部的细胞分化是一个典型的编程性死亡(Programmed cell death,PCD)过程,CLPs可能参与了此过程。  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号