首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   0篇
  国内免费   1篇
  128篇
  2024年   1篇
  2022年   10篇
  2021年   10篇
  2020年   1篇
  2019年   4篇
  2018年   8篇
  2017年   11篇
  2016年   7篇
  2015年   7篇
  2014年   13篇
  2013年   7篇
  2012年   12篇
  2011年   14篇
  2010年   7篇
  2009年   2篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  1997年   1篇
  1987年   1篇
排序方式: 共有128条查询结果,搜索用时 15 毫秒
91.
    
Background:Because it tends to cause deterioration in the quality of food and appearance, food browning is unacceptable. Tyrosinase, which catalyzes the transformation of mono phenolic compounds into o-quinones, has been associated with this phenomenon. Natural anti-browning agents were used to help avoid the enzymatic browning that occurs in many foods.Methods:Tyrosinase of Jerusalem Artichoke tubers was purified through (NH4)2SO4 sedimentation, dialysis, chromatography, and finally gel electrophoresis. The purified enzyme was characterized and inhibited by rosemary extracts.Results:Purification of tyrosinase from Jerusalem Artichoke tuber were accomplished. The specific activity at the final step of purification increased to 14115.76 U/mg protein with purification fold 32.89 using CM-Cellulose chromatography. The molecular mass was evaluated by electrophoresis and found to be 62 KDa. Maximum tyrosinase activity was found at 30 °C, pH 7.2, and higher affinity towards L-tyrosine. Inhibition percentage of heated extracts for leaves and flowers on tyrosinase activity was better than nonheated with 29.65% and 23.75%, respectively. The kinetic analysis exposed uncompetitive inhibition by leaves and flowers heated extracts. Conclusion:In this study, we concluded the usage of natural anti-browning inhibitors like rosemary extract be able to be castoff to substitute the chemical agents which might be dangerous to social healthiness. Natural anti-browning agents can be used to prevent the browning of many foods.Key Words: Jerusalem artichoke, Rosemary, Tyrosinase  相似文献   
92.

The natural antioxidant agent is urgently needed to prevent the negative effects of newly generated free radicals and chronic disorders. Recently, the microbial exopolysaccharide (EPS) is currently used as a potential biopolymer due to its unique biological characteristics. In this study, the biological potential was carried out on the EPSs produced by Lactobacillus reuteri SHA101 (EPS-lr) and Lactobacillus vaginalis SHA110 (EPS-lvg) isolated from gut cecum samples of healthy poultry birds (hen). As results, the EPS-lr and EPS-lvg showed the emulsifying activity of 37.8 ± 1.6% and 27.8 ± 0.5% after the 360 h, respectively. The scanning electron microscopy analysis of EPS-lr and EPS-lvg demonstrated a smooth surface with a compact structure. The both EPSs exhibited strong antibacterial activity against E. coli and Salmonella typhimurium in vitro. In additions, at 4 mg/mL concentration, the EPS-lr and EPS-lvg samples showed potent antioxidant activity regarding hydroxyl radical DPPH (2,2-diphenyl-1-picrylhydrazyl) radical, superoxide anion radical and reducing power at OD700 nm. Furthermore, the EPS-lr and EPS-lvg (600 μg/mL) possessed antitumor activity against colon cancer (Caco-2) cell after 72 h. The results suggested that these EPSs would have great potential in the application of antitumor and antioxidant foods, biomedicine, and pharmaceutics.

  相似文献   
93.
94.
To determine the role and mechanisms of action by which dopaminergic innervation modulates ductal secretion in bile duct-ligated rats, we determined the expression of D1, D2, and D3 dopaminergic receptors in cholangiocytes. We evaluated whether D1, D2 (quinelorane), or D3 dopaminergic receptor agonists influence basal and secretin-stimulated choleresis and lumen expansion in intrahepatic bile duct units (IBDU) and cAMP levels in cholangiocytes in the absence or presence of BAPTA-AM, chelerythrine, 1-(5-isoquinolinylsulfonyl)-2-methyl piperazine (H7), or rottlerin. We evaluated whether 1) quinelorane effects on ductal secretion were associated with increased expression of Ca(2+)-dependent PKC isoforms and 2) increased expression of PKC causes inhibition of PKA activity. Quinelorane inhibited secretin-stimulated choleresis in vivo and IBDU lumen space, cAMP levels, and PKA activity in cholangiocytes. The inhibitory effects of quinelorane on secretin-stimulated ductal secretion and PKA activity were blocked by BAPTA-AM, chelerythrine, and H7. Quinelorane effects on ductal secretion were associated with activation of the Ca(2+)-dependent PKC-gamma but not other PKC isoforms. The dopaminergic nervous system counterregulates secretin-stimulated ductal secretion in experimental cholestasis.  相似文献   
95.
The housefly, Musca domestica L. (Diptera: Muscidae), is a major medical and veterinary insect pest. It serves as a vector of many pathogenic microorganisms causing spoilage of food and diseases in human and animals. Use of chemical insecticides is adapted as a principal tool to manage housefly. Insecticides have many unforeseen ecological consequences including effects on non-target organisms. In the present study, we have assessed the effects of 10 different synthetic insecticides on the growth of mycoflora associated with the external body of the housefly by using poison food technique. Our results reveled that all synthetic insecticides enhanced the growth. Surprisingly, in most of the cases, mycelial growth of fungi was significantly increased at high concentration as compared with lower concentration. This study provides useful information about the dangerous effects of synthetic insecticides on environment by increasing the spread of various non-target pathogenic, mycotoxigenic, and food spoiling fungi, carried by houseflies.  相似文献   
96.
A specific liquid chromatography-mass spectrometric (LC-MS/MS) assay was developed and validated for the determination of lercanidipine, a dihydropyridine calcium channel blocker, in human plasma. Lercanidipine R-D3 was used as internal standard (IS). The drug was extracted from plasma using liquid-liquid extraction technique utilizing hexane: ethyl acetate as extraction solvent. The samples were analyzed using a prepacked Thermo Hypersil C(8) column and a mobile phase composed of a mixture of aqueous acetic acid and triethylamine in methanol. An ion trap mass spectrometer equipped with electrospray ionization (ESI) source operating in the positive ion mode was used to develop and validate the method. The method was proved to be sensitive and specific by testing six different human plasma batches. Linearity was established for the concentration ranges of 0.1-16 ng/ml with a regression factor of 0.9996. The lower limit of quantitation was identifiable and reproducible at 0.1 ng/ml with a precision of 7.2%.  相似文献   
97.

Background

The threatened plant Centella asiatica L. is traditionallyused for a number of remedies. In vitro plant propagation and enhanced metabolite production of active metabolites through biotechnological approaches has gained attention in recent years.

Results

Present study reveals that 6-benzyladenine (BA) either alone or in combination with 1-naphthalene acetic acid (NAA) supplemented in Murashige and Skoog (MS) medium at different concentrations produced good quality callus from leaf explants of C. asiatica. The calli produced on different plant growth regulators at different concentrations were mostly embryogenic and green. Highest shoot regeneration efficiency; 10 shoots per callus explant, from non-embryogenic callus was observed on 4.42 μM BA with 5.37 μM NAA. Best rooting response was observed at 5.37 and 10.74 μM NAA with 20 average number of roots per explant. Calli and regenerated plants extracts inhibited bacterial growth with mean zone of inhibition 9-13 mm diameter when tested against six bacterial strains using agar well diffusion method. Agar tube dilution method for antifungal assay showed 3.2-76% growth inhibition of Mucor species, Aspergillus fumigatus and Fusarium moliniformes.

Conclusions

The present investigation reveals that non-embryogenic callus can be turned into embryos and plantlets if cultured on appropriate medium. Furthermore, callus from leaf explant of C. asiatica can be a good source for production of antimicrobial compounds through bioreactor.  相似文献   
98.
    
Medicinal plants have significant contribution in pharmaceutical industries being producers of compounds utilized as precursors for drug development. A plant of Lamiaceae family; Pseudocaryopteris foetida had not been investigated for its biomedical potential. Current research was aimed to investigate phytochemical analysis, cytotoxic potential and antioxidant activity of crude methanolic extract and fractions of Pseudocaryopteris foetida (leaves). The preliminary phytochemical analysis of crude methanolic extracts and fractions of Pseudocaryopteris foetida revealed that plant is rich in phenolic and flavonoid classes of secondary metabolites while presence of tannin was observed only in crude methanolic extract. The cytotoxicity was determined using brine shrimp lethality test. Different concentrations (25, 50, 100, 150, 200 and 250 µg/mL) of crude methanolic extract and fractions exhibited dose dependent cytotoxicity. However, The LD50 for all the extracts was more than 200 µg/mL indicating weak cytotoxic potential of Pseudocaryopteris foetida. The antioxidant capabilities of crude methanolic extract and fraction of Pseudocaryopteris foetida were analyzed by in vitro bio assays including DPPH, ABTS, Reducing power and phosphomolybdate antioxidant assays using ascorbic acid as standard. The crude methanolic extract showed IC50 (256.38 ± 0.6 and 314.95 ± 1.1 µg/mL) for DPPH and ABTS respectively, while total antioxidant capacity was calculated as 55.79 ± 0.5 µg/mL for crude methanolic extract of Pseudocaryopteris foetida while ascorbic acid indicated total antioxidant capacity of 71.89 ± 2.3 µg/mL. Study concluded that leaves of Pseudocaryopteris foetida were the rich source of antioxidant phytochemicals. Based on preliminary investigations further research should be focused to isolate bioactive phytochemicals as leading source of clinical medicines in future.  相似文献   
99.
    
Salmonella enterica serovar Typhi is Gram negative, rod shaped, facultative anaerobic bacterium, belongs to enterobacteriaceae family that causes typhoid fever in humans. This bacterium has become a super bug due to acquisition of multi drug resistance. Bacteria is transmitted through food and water contaminated with human feaces. Present study reports the screening of Adhatoda vasica, Amaranthus hybridus and Aloe barbadensis and their evaluation against multi-drug resistant Salmonella enterica serovar Typhi. Qualitative analysis of ten phytochemicals was conducted using chemical method and Gas Chromatography-Mass Spectrometry (GCMS). Antibacterial activity of plants was carried out by agar well diffusion method on Mueller Hinton agar. Total tannins, total alkaloids and total flavonoids of different parts of three plants were estimated through spectrophotometer. Total tannins content in different parts of plants was present in the given order Amaranthus hybridus leaf > Aloe barbadensis leaf > Adhatoda vasica leaf > Adhatoda vasica flower > Adhatoda vasica stem. Whereas, the order of total flavonoid concentration was Amaranthus hybridus leaf > Aloe barbadensis leaf > Adhatoda vasica leaf > Amaranthus hybridus seed. Total alkaloids have order, Adhatoda vasica leaf > Amaranthus hybridus leaf > Adhatoda vasica flower > Amaranthus hybridus seed > Aloe barbadensis leaf. Results of phytochemical analysis suggested that plants have strong profile of antioxidants, total phenolic contents and various enzymes proposing them best alternate to cure bacterial infections. GC-MS analysis further confirmed stronger phytochemical profile that can be utilized as antagonists to Salmonella enterica serovar Typhi.  相似文献   
100.
    
Despite advancement in modern medicines, plant derived medicines have still wide range utilities as they have less side effects and are cheap and biocompitable. Sassurea lappa is an extensively used plant in traditional medicinal formulations. Plant roots are used to cure various diseases including cancer, rheumatic pain, abdominal and nervous disorders. The present study was aimed for the evalution of biological potentials of methanolic and chloroform extracts of Saussurea lappa root, leaf, seed and flower. The methanolic and chloroform extracts were subjected to qualitative and quantitative phytochemical analyses. Identification of functional groups was performed using Fourier Transform infrared (FT-IR) spectroscopy. Antioxidant potential was determined via diphenyl-1-picrylhydrazyl (DPPH), total reducing power (TRP) and total antioxidant capacity (TAC) method, anti-hemolytic potential was conducted on human RBCs, antibacterial activity was evaluated against six American type culture collection (ATCC) and three multi drug resistance (MDR) strains, cytotoxic and phytotoxic potentials were evaluated through brine shrimp lethality assay and raddish seed assay respectively. Experiments were performed in triplicates and analysis of variance (ANOVA) was applied using statistics version-8.1. Phytochemical analysis revealed the presence of sixteen secondary metabolites. Fourteen functional groups were identified through FTIR. S. lappa root methanolic (SLRM) showed maximum antioxidant activity index (AAI-79.42%) whereas chloroform extract of leaves (SLLC) gave highest antibacterial activity with maximum zone of inhibition (ZOI) against Pseudomonas aeruginosa (21.4 mm). Maximum cytotoxicity was observed for SLRM with lethal dose concentration (LC50) of 58.8 µg/mL. However, root extracts showed significant phytotoxicity (15% germination). The current study investigated that bioactive compounds present in S. lappa leaves, seed, flower and roots were responsible for enhanced biological potentials. Further studies on isolation and characterization of these bioactive compounds may help in drug development. In future, we recommend different in-vitro and in-vivo studies to further confirm it biopharmacological potencies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号