首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   227篇
  免费   20篇
  国内免费   1篇
  2023年   1篇
  2022年   4篇
  2021年   6篇
  2020年   4篇
  2019年   2篇
  2018年   17篇
  2017年   3篇
  2016年   2篇
  2015年   11篇
  2014年   12篇
  2013年   16篇
  2012年   16篇
  2011年   14篇
  2010年   10篇
  2009年   12篇
  2008年   12篇
  2007年   13篇
  2006年   6篇
  2005年   10篇
  2004年   5篇
  2003年   9篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1999年   4篇
  1998年   7篇
  1997年   1篇
  1996年   5篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   3篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1980年   1篇
  1979年   4篇
  1977年   2篇
  1973年   1篇
  1971年   1篇
排序方式: 共有248条查询结果,搜索用时 265 毫秒
51.
52.
CitS of Klebsiella pneumoniae is a secondary transporter that transports citrate in symport with 2 Na(+) ions. Reaction of Cys-398 and Cys-414, which are located in a cytoplasmic loop of the protein that is believed to be involved in catalysis, with thiol reagents resulted in significant inhibition of uptake activity. The reactivity of the two residues was determined in single Cys mutants in different catalytic states of the transporter and from both sides of the membrane. The single Cys mutants were shown to have the same transport stoichiometry as wild type CitS, but the C398S mutation was responsible for a 10-fold loss of affinity for Na(+). Both cysteine residues were accessible from the periplasmic as well as from the cytoplasmic side of the membrane by the membrane-impermeable thiol reagent [2-(trimethylammonium)ethyl] methanethiosulfonate bromide (MTSET) suggesting that the residues are part of the translocation site. Binding of citrate to the outward facing binding site of the transporter resulted in partial protection against inactivation by N-ethylmaleimide, whereas binding to the inward facing binding site resulted in essentially complete protection. A 10-fold higher concentration of citrate was required at the cytoplasmic rather than at the periplasmic side of the membrane to promote protection. Only marginal effects of citrate binding were seen on reactivity with MTSET. Binding of Na(+) at the periplasmic side of the transporter protected both Cys-398 and Cys-414 against reaction with the thiol reagents, whereas binding at the cytoplasmic side was less effective and discriminated between Cys-398 and Cys-414. A model is presented in which part of the cytoplasmic loop containing Cys-398 and Cys-414 folds back into the translocation pore as a pore-loop structure. The loop protrudes into the pore beyond the citrate-binding site that is situated at the membrane-cytoplasm interface.  相似文献   
53.
We have established the structures of 10 human microRNA (miRNA) precursors using biochemical methods. Eight of these structures turned out to be different from those that were computer-predicted. The differences localized in the terminal loop region and at the opposite side of the precursor hairpin stem. We have analyzed the features of these structures from the perspectives of miRNA biogenesis and active strand selection. We demonstrated the different thermodynamic stability profiles for pre-miRNA hairpins harboring miRNAs at their 5'- and 3'-sides and discussed their functional implications. Our results showed that miRNA prediction based on predicted precursor structures may give ambiguous results, and the success rate is significantly higher for the experimentally determined structures. On the other hand, the differences between the predicted and experimentally determined structures did not affect the stability of termini produced through "conceptual dicing." This result confirms the value of thermodynamic analysis based on mfold as a predictor of strand section by RNAi-induced silencing complex (RISC).  相似文献   
54.
55.
The liquorice tribe Glycyrrhizeae is a leguminous herbaceous group of plants comprised of the genera Glycyrrhiza and Glycyrrhizopsis. Some Glycyrrhiza taxa contain glycyrrhizin, a pharmacologically significant sweet substance that also has applications in crafting industrial materials. Here, we utilized an expanded taxon sampling of Glycyrrhizeae to reconstruct the phylogenetic relationships in the tribe based on genome skimming data, including whole chloroplast genomes, nuclear ribosomal DNA, and low-copy nuclear DNA. We also launched machine learning analysis (MLA) for one species pair with controversial taxonomic boundary. The integrated results indicated Glycyrrhizopsis should be split from Glycyrrhiza, while the former genus Meristotropis should be treated as part of Glycyrrhiza. Glycyrrhizopsis includes two species, Glycyrrhizopsis asymmetrica and Glycyrrhizopsis flavescens, and we recognize 13 species in Glycyrrhiza: Glycyrrhiza acanthocarpa, Glycyrrhiza astragalina, Glycyrrhiza bucharica, Glycyrrhiza echinata, Glycyrrhiza foetida, Glycyrrhiza glabra, Glycyrrhiza gontscharovii, Glycyrrhiza lepidota, Glycyrrhiza macedonica, Glycyrrhiza pallidiflora, Glycyrrhiza squamulosa, Glycyrrhiza triphylla, and Glycyrrhiza yunnanensis. We propose a broader G. glabra that includes former Glycyrrhiza aspera, G. glabra s.s., Glycyrrhiza inflata, and Glycyrrhiza uralensis, and represents the glycyrrhizin-contained medicinal group. Our ancestral state inferences show the ancestor of Glycyrrhiza lacked glycyrrhizin, and the presence of glycyrrhizin evolved twice within Glycyrrhiza during the last one million years. Our integrative phylogenomics-MLA study not only provides new insights into long-standing taxonomic controversies of Glycyrrhizeae, but also represents a useful approach for future taxonomic studies on other plant taxa.  相似文献   
56.
Thymus cell-derived macromolecular insoluble cold globulin (T-MICG) is a 225,000-dalton protein, selectively synthesized in human T cells. Null cell-derived macromolecular insoluble cold globulin (N-MICG) is a 185,000-dalton protein, synthesized in null cells, and antigenically distinct from T-MICG. Evidence to support these conclusions was provided by using isolated cell preparations that were radiolabeled, lysed in desoxycholate, and precipitated with monospecific antiserum to each component. These studies demonstrated that antiserum to T-MICG precipitated a 225,000 dalton protein from PBL and T cells, but not from B or null cells. Antiserum to N-MICG reacted with a 185,000 dalton protein present in PBL and null cells, but not with lysates from either T or B cells. The plasma membrane distribution of these proteins was shown by absorption of antiserum to T + N-MICG with either isolated T or null cells. Antibody-induced cytotoxicity and immunofluorescence confirmed the cell surface location of T and N-MICG. Divergent biologic effects of these antisera were also noted. Antiserum to T-MICG inhibited T cell rosette formation and the one-way mixed lymphocyte reaction, although anti-N-MICG antiserum had no such effect. The potential importance of these proteins is discussed.  相似文献   
57.
In vitro aged sheep erythrocytes and sheep erythrocyte ghosts spontaneously release vesicles that consist of long protrusions affixed to flattened headlike structures. The intramembranous particles seen on the protoplasmic face of freeze fracture electron micrographs of vesicle protrusions are arranged in paired particle rows. On the equivalent fracture face of headlike structures, the particle density is low; if particles are present, they are clustered along the rim of the flattened headlike structure and at the junction with the protrusion. The released vesicles are depleted of the intramembranous particles seen on the exoplasmic face of ghost but retain almost exclusively particles of the protoplasmic face. Correspondingly, the exoplasmic face of ghosts that have released vesicles reveals a 28 percent higher density of intramembranous particles than that of fresh ghosts. Purified vesicles are depleted of spectrin but retain integral membrane proteins, with one of an apparent mol wt of 160,000 accounting for nearly 50 percent of the total protein (Lutz, H.U.,R. Barber, and R.F. McGuire. 1976. J. Biol. Chem. 251:3500-3510). When vesicles are modified with the cleavable cross-linking reagent [(35)S]dithiobis (succinimidyl propionate)at 0 degrees C, the 160,000 mol wt protein is rapidly converted to disulfide-linked dimers and higher oligomers. Exposure of intact ghosts to the reagent in the same way fails to yield equivalent polymers. A comparison of the morphological and biochemical aspects of ghosts and vesicles suggest that a marked rearrangement of membrane proteins accompanies the supramolecular redistribution of intramembranous particles during spontaneous vesiculation. The results also suggest that the paired particles of the protoplasmic face of vesicle protrusions are arranged in paired helices and contain the 160,000 mol wt protein as dimers.  相似文献   
58.
The selenium status and the relationship of whole-blood selenium and plasma homocysteine are reported for healthy human subjects living in Upper Silesia. A total of 1063 individuals (627 male and 436 female) examined for whole-blood selenium were subdivided into six groups according to age; the youngest included adolescents (n=143) aged 10–15 yr, and the oldest were centenarians (n=132). The mean Se content was relatively low (62.5±18.4 μg/L), and it tended to be higher in men (65.9±17.2 μg/L) than in women (57.5±18.9 μg/L). Selenium levels appeared to be age dependent, as the highest values were observed in young and middle-age adults (21–40 yr), whereas they were significantly lower in adolescents and in the elderly. In more than 40% of apparently healthy adults (aged 21–69 yr), the Se concentration was within the range 60–80 μg/L (i.e., below the lower limit of the nutritional adequacy range [80 μg/L]). A significant inverse correlation between whole-blood selenium and plasma total homocysteine was detected in a smaller population sample of middle-aged and elderly persons (n=204).  相似文献   
59.
The tomato Hero A gene is the only member of a multigene family that confers a high level (>80%) of resistance to all the economically important pathotypes of potato cyst nematode (PCN) species Globodera rostochiensis and G. pallida. Although the resistance levels of transgenic tomato lines were similar to those of the tomato line LA1792 containing the introgressed Hero multigene family, transgenic potato plants expressing the tomato Hero A gene are not resistant to PCNs. Comparative microscopy studies of in vitro infected roots of PCN-susceptible tomato cv. Money Maker, the resistant breeding line LA1792, and transgenic line L10 with Ro1 pathotype have revealed no statistically significant difference in the number of juveniles invading roots. However, syncytia (specialized feeding cells) induced in LA1792 and L10 roots mostly were found to have degenerated a few days after their induction, and a few surviving syncytia were able to support only the development of males rather than females. Thus, the ratio between males and females was biased towards males on LA1792 and L10 roots. A series of changes occur in resistant plants leading to formation of a layer of necrotic cells separating the syncytium from stellar conductive tissues and this is followed by degradation of the syncytium. Although the Hero A gene is expressed in all tissues, including roots, stems, leaves, and flower buds, its expression is upregulated in roots in response to PCN infection. Moreover, the expression profiles of the Hero A correlates with the timing of death of the syncytium.  相似文献   
60.
In Saccharomyces cerevisiae, reduction of NAD(+) to NADH occurs in dissimilatory as well as in assimilatory reactions. This review discusses mechanisms for reoxidation of NADH in this yeast, with special emphasis on the metabolic compartmentation that occurs as a consequence of the impermeability of the mitochondrial inner membrane for NADH and NAD(+). At least five mechanisms of NADH reoxidation exist in S. cerevisiae. These are: (1) alcoholic fermentation; (2) glycerol production; (3) respiration of cytosolic NADH via external mitochondrial NADH dehydrogenases; (4) respiration of cytosolic NADH via the glycerol-3-phosphate shuttle; and (5) oxidation of intramitochondrial NADH via a mitochondrial 'internal' NADH dehydrogenase. Furthermore, in vivo evidence indicates that NADH redox equivalents can be shuttled across the mitochondrial inner membrane by an ethanol-acetaldehyde shuttle. Several other redox-shuttle mechanisms might occur in S. cerevisiae, including a malate-oxaloacetate shuttle, a malate-aspartate shuttle and a malate-pyruvate shuttle. Although key enzymes and transporters for these shuttles are present, there is as yet no consistent evidence for their in vivo activity. Activity of several other shuttles, including the malate-citrate and fatty acid shuttles, can be ruled out based on the absence of key enzymes or transporters. Quantitative physiological analysis of defined mutants has been important in identifying several parallel pathways for reoxidation of cytosolic and intramitochondrial NADH. The major challenge that lies ahead is to elucidate the physiological function of parallel pathways for NADH oxidation in wild-type cells, both under steady-state and transient-state conditions. This requires the development of techniques for accurate measurement of intracellular metabolite concentrations in separate metabolic compartments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号