首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4159篇
  免费   340篇
  国内免费   10篇
  2023年   7篇
  2022年   38篇
  2021年   82篇
  2020年   63篇
  2019年   84篇
  2018年   104篇
  2017年   79篇
  2016年   150篇
  2015年   258篇
  2014年   254篇
  2013年   275篇
  2012年   380篇
  2011年   312篇
  2010年   188篇
  2009年   178篇
  2008年   277篇
  2007年   242篇
  2006年   217篇
  2005年   190篇
  2004年   190篇
  2003年   150篇
  2002年   145篇
  2001年   77篇
  2000年   61篇
  1999年   62篇
  1998年   37篇
  1997年   27篇
  1996年   12篇
  1995年   11篇
  1994年   16篇
  1993年   12篇
  1992年   26篇
  1991年   28篇
  1990年   16篇
  1989年   26篇
  1988年   24篇
  1987年   23篇
  1986年   22篇
  1985年   16篇
  1984年   15篇
  1983年   9篇
  1982年   12篇
  1981年   12篇
  1980年   10篇
  1979年   12篇
  1977年   8篇
  1976年   5篇
  1975年   13篇
  1974年   10篇
  1973年   8篇
排序方式: 共有4509条查询结果,搜索用时 109 毫秒
71.
72.
73.
Direct conversion of mechanical energy into direct current (DC) by triboelectric nanogenerators (TENGs) is one of the desired features in terms of energy conversion efficiency. Although promising applications have been reported using the triboelectric effect, effective DC generating TENGs must be developed for practical purposes. Here, it is reported that continuous DC generation within a TENG itself, without any circuitry, can be achieved by triggering air breakdown via triboelectrification. It is demonstrated that DC generation occurs in combination with i) charge accumulation to generate air breakdown, ii) incident discharge (microdischarge), and iii) conveyance of charges to make the device sustainable. 10.5 mA m?2 of output current and 10.6 W m?2 of output power at 33 MΩ load resistance are achieved. Compared to the best DC generating TENGs ever reported, the TENG in this present study generates about 20 times larger root‐mean square current density.  相似文献   
74.
75.
We carried out DNA barcoding on 24 Korean tettigonid species of 19 genera deposited in the National Institute of Biological Resources to reevaluate the preliminary identification of each specimen. Sequence divergence of DNA barcodes obtained from 113 samples of the 24 species ranged from 0 to 30.4%, the intraspecific variation was 0–7.3%, and the interspecific divergence was 1.1–30.4%; we could not examine the barcoding gap. In the neighbor‐joining tree, the branch length among individuals of Tettigonia ussuriana, Paratlanticus ussuriensis, and Hexacentrus japonicus were relatively longer than those in other species. The detailed analysis of the morphological characters and DNA barcodes of the above three species revealed that these three species represent species complexes. The T. ussuriana complex comprised T. jungi, T. uvarovi, and T. ussuriana. Paratlanticus ussuriensis cluster contained four species; one cluster was identified as P. palgongensis based on morphological characteristics, but the other three clusters, including the P. ussuriensis cluster, require further detailed taxonomic analysis. Lastly, two species clusters were identified within the Hexacentrus japonicus clade. Based on the 99% sequence similarity obtained by blast search of the NCBI GenBank database, one of the clusters was identified as H. unicolor. Thus, the DNA barcoding revealed the presence of at least three cryptic species in Korean Tettigoniidae, although more detailed taxonomic analyses are required to establish their status. Therefore, we suggest that DNA barcoding is a very useful tool for increasing the identification accuracy of insect collections.  相似文献   
76.
Glucose controls the phosphorylation of silent information regulator 2 (Sir2), a NAD+‐dependent protein deacetylase, which regulates the expression of the ATP‐dependent proton pump Pma1 and replicative lifespan (RLS) in yeast. TORC1 signaling, which is a central regulator of cell growth and lifespan, is regulated by glucose as well as nitrogen sources. In this study, we demonstrate that TORC1 signaling controls Sir2 phosphorylation through casein kinase 2 (CK2) to regulate PMA1 expression and cytoplasmic pH (pHc) in yeast. Inhibition of TORC1 signaling by either TOR1 deletion or rapamycin treatment decreased PMA1 expression, pHc, and vacuolar pH, whereas activation of TORC1 signaling by expressing constitutively active GTR1 (GTR1Q65L) resulted in the opposite phenotypes. Deletion of SIR2 or expression of a phospho‐mutant form of SIR2 increased PMA1 expression, pHc, and vacuolar pH in the tor1Δ mutant, suggesting a functional interaction between Sir2 and TORC1 signaling. Furthermore, deletion of TOR1 or KNS1 encoding a LAMMER kinase decreased the phosphorylation level of Sir2, suggesting that TORC1 signaling controls Sir2 phosphorylation. It was also found that Sit4, a protein phosphatase 2A (PP2A)‐like phosphatase, and Kns1 are required for TORC1 signaling to regulate PMA1 expression and that TORC1 signaling and the cyclic AMP (cAMP)/protein kinase A (PKA) pathway converge on CK2 to regulate PMA1 expression through Sir2. Taken together, these findings suggest that TORC1 signaling regulates PMA1 expression and pHc through the CK2–Sir2 axis, which is also controlled by cAMP/PKA signaling in yeast.  相似文献   
77.
Crystal structures of enoyl-coenzyme A (CoA) isomerase from Bosea sp. PAMC 26642 (BoECI) and enoyl-CoA hydratase from Hymenobacter sp. PAMC 26628 (HyECH) were determined at 2.35 and 2.70 Å resolution, respectively. BoECI and HyECH are members of the crotonase superfamily and are enzymes known to be involved in fatty acid degradation. Structurally, these enzymes are highly similar except for the orientation of their C-terminal helix domain. Analytical ultracentrifugation was performed to determine the oligomerization states of BoECI and HyECH revealing they exist as trimers in solution. However, their putative ligand-binding sites and active site residue compositions are dissimilar. Comparative sequence and structural analysis revealed that the active site of BoECI had one glutamate residue (Glu135), this site is occupied by an aspartate in some ECIs, and the active sites of HyECH had two highly conserved glutamate residues (Glu118 and Glu138). Moreover, HyECH possesses a salt bridge interaction between Glu98 and Arg152 near the active site. This interaction may allow the catalytic Glu118 residue to have a specific conformation for the ECH enzyme reaction. This salt bridge interaction is highly conserved in known bacterial ECH structures and ECI enzymes do not have this type of interaction. Collectively, our comparative sequential and structural studies have provided useful information to distinguish and classify two similar bacterial crotonase superfamily enzymes.  相似文献   
78.
79.
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an infectious disease with multiple severe symptoms, such as fever over 37.5°C, cough, dyspnea, and pneumonia. In our research, microRNAs (miRNAs) binding to the genome sequences of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory-related coronavirus (MERS-CoV), and SARS-CoV-2 were identified by bioinformatic tools. Five miRNAs (hsa-miR-15a-5p, hsa-miR-15b-5p, hsa-miR-195-5p, hsa-miR-16-5p, and hsa-miR-196a-1-3p) were found to commonly bind to SARS-CoV, MERS-CoV, and SARS-CoV-2. We also identified miRNAs that bind to receptor proteins, such as ACE2, ADAM17, and TMPRSS2, which are important for understanding the infection mechanism of SARS-CoV-2. The expression patterns of those miRNAs were examined in hamster lung samples infected by SARS-CoV-2. Five miRNAs (hsa-miR-15b-5p, hsa-miR-195-5p, hsa-miR-221-3p, hsa-miR-140-3p, and hsa-miR-422a) showed differential expression patterns in lung tissues before and after infection. Especially, hsa-miR-15b-5p and hsa-miR-195-5p showed a large difference in expression, indicating that they may potentially be diagnostic biomarkers for SARS-CoV-2 infection.  相似文献   
80.
Antimicrobial peptides are class of small, positively charged peptides known for their broad‐spectrum antimicrobial activity. Antimicrobial activities for most antimicrobial peptides have largely remained elusive, particularly in the lactic acid bacteria. However, recently our investigation using LPcin‐YK3, an antimicrobial peptide from bovine milk, suggests that in vitro antimicrobial activity was reduced over 100‐fold compared with pathogenic bacteria. Additionally, for the structural study of how antimicrobial peptide undergoes its reaction at the proteolytic pathway of lactic acid bacteria based on degradation assay and propidium iodide staining, we performed molecular docking for interaction between oligopeptide‐binding protein A and LPcin‐YK3 peptide. Given that degradation related to the LPcin‐YK3 peptide in lactic acid bacteria proteolytic system, the inhibitory inactivity of LPcin‐YK3 against beneficial lactic acid bacteria strains may be one of the primary pharmacological properties of recombinant peptide discovered in bovine milk. These results provide structural and functional insights into the proteolytic mechanism and possibility as a putative substrate of oligopeptide‐binding protein A in respect of LPcin‐YK3 peptide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号