全文获取类型
收费全文 | 5924篇 |
免费 | 415篇 |
国内免费 | 4篇 |
专业分类
6343篇 |
出版年
2023年 | 26篇 |
2022年 | 90篇 |
2021年 | 133篇 |
2020年 | 81篇 |
2019年 | 106篇 |
2018年 | 147篇 |
2017年 | 137篇 |
2016年 | 187篇 |
2015年 | 306篇 |
2014年 | 367篇 |
2013年 | 410篇 |
2012年 | 547篇 |
2011年 | 504篇 |
2010年 | 323篇 |
2009年 | 253篇 |
2008年 | 367篇 |
2007年 | 297篇 |
2006年 | 281篇 |
2005年 | 263篇 |
2004年 | 256篇 |
2003年 | 208篇 |
2002年 | 154篇 |
2001年 | 92篇 |
2000年 | 126篇 |
1999年 | 80篇 |
1998年 | 43篇 |
1997年 | 34篇 |
1996年 | 22篇 |
1995年 | 23篇 |
1994年 | 13篇 |
1993年 | 29篇 |
1992年 | 39篇 |
1991年 | 36篇 |
1990年 | 33篇 |
1989年 | 22篇 |
1988年 | 29篇 |
1987年 | 21篇 |
1986年 | 15篇 |
1985年 | 19篇 |
1984年 | 16篇 |
1983年 | 16篇 |
1982年 | 13篇 |
1980年 | 14篇 |
1979年 | 18篇 |
1978年 | 11篇 |
1976年 | 12篇 |
1974年 | 15篇 |
1973年 | 11篇 |
1969年 | 12篇 |
1968年 | 11篇 |
排序方式: 共有6343条查询结果,搜索用时 12 毫秒
41.
42.
43.
miR-124-1 is a tumour suppressor microRNA (miR). Epigenetic deregulation of miRs is implicated in carcinogenesis. Promoter DNA methylation and histone modification of miR-124-1 was studied in 5 normal marrow controls, 4 lymphoma, 8 multiple myeloma (MM) cell lines, 230 diagnostic primary samples of acute myeloid leukaemia (AML), acute lymphoblastic leukaemia (ALL), chronic myeloid leukaemia (CML), chronic lymphocytic leukaemia (CLL), MM, and non-Hodgkin's lymphoma (NHL), and 53 MM samples at stable disease or relapse. Promoter of miR-124-1 was unmethylated in normal controls but homozygously methylated in 4 of 4 lymphoma and 4 of 8 myeloma cell lines. Treatment of 5-Aza-2'-deoxycytidine led to miR-124-1 demethylation and re-expression of mature miR-124, which also associated with emergence of euchromatic trimethyl H3K4 and consequent downregulation of CDK6 in myeloma cells harboring homozygous miR-124-1 methylation. In primary samples at diagnosis, miR-124-1 methylation was absent in CML but detected in 2% each of MM at diagnosis and relapse/progression, 5% ALL, 15% AML, 14% CLL and 58.1% of NHL (p<0.001). Amongst lymphoid malignancies, miR-124-1 was preferentially methylated in NHL than MM, CLL or ALL. In primary lymphoma samples, miR-124-1 was preferentially hypermethylated in B- or NK/T-cell lymphomas and associated with reduced miR-124 expression. In conclusion, miR-124-1 was hypermethylated in a tumour-specific manner, with a heterochromatic histone configuration. Hypomethylation led to partial restoration of euchromatic histone code and miR re-expression. Infrequent miR-124-1 methylation detected in diagnostic and relapse MM samples showed an unimportant role in MM pathogenesis, despite frequent methylation found in cell lines. Amongst haematological cancers, miR-124-1 was more frequently hypermethylated in NHL, and hence warrants further study. 相似文献
44.
Activation of the non-phagocytic superoxide-producing NADPH oxidase Nox1, complexed with p22(phox) at the membrane, requires its regulatory soluble proteins Noxo1 and Noxa1. However, the role of the small GTPase Rac remained to be clarified. Here we show that Rac directly participates in Nox1 activation via interacting with Noxa1. Electropermeabilized HeLa cells, ectopically expressing Nox1, Noxo1, and Noxa1, produce superoxide in a GTP-dependent manner, which is abrogated by expression of a mutant Noxa1(R103E), defective in Rac binding. Superoxide production in Nox1-expressing HeLa and Caco-2 cells is decreased by depletion or sequestration of Rac; on the other hand, it is enhanced by expression of the constitutively active Rac1(Q61L), but not by that of a mutant Rac1 with the A27K substitution, deficient in binding to Noxa1. We also demonstrate that Nox1 activation requires membrane recruitment of Noxa1, which is normally mediated via Noxa1 binding to Noxo1, a protein tethered to the Nox1 partner p22(phox): the Noxa1-Noxo1 and Noxo1-p22(phox) interactions are both essential for Nox1 activity. Rac likely facilitates the membrane localization of Noxa1: although Noxa1(W436R), defective in Noxo1 binding, neither associates with the membrane nor activates Nox1, the effects of the W436R substitution are restored by expression of Rac1(Q61L). The Rac-Noxa1 interaction also serves at a step different from the Noxa1 localization, because the binding-defective Noxa1(R103E), albeit targeted to the membrane, does not support superoxide production by Nox1. Furthermore, a mutant Noxa1 carrying the substitution of Ala for Val-205 in the activation domain, which is expected to undergo a conformational change upon Rac binding, fully localizes to the membrane but fails to activate Nox1. 相似文献
45.
O-linked N-acetylglucosaminyltransferase (OGT)-mediated protein O-GlcNAcylation has been revealing various aspects of functional significance in biological processes, such as cellular signaling and activation of immune system. We found that OGT is maintained as S-nitrosylated form in resting cells, and its denitrosylation is triggered in innate immune response of lipopolysaccharide (LPS)-treated macrophage cells. S-nitrosylation of OGT strongly inhibits its catalytic activity up to more than 80% of native OGT, and denitrosylation of OGT leads to protein hyper-O-GlcNAcylation. Furthermore, blockage of increased protein O-GlcNAcylation results in significant loss of nitric oxide and cytokine production. We propose that denitrosylation of S-nitrosylated OGT is a direct mechanism for upregulation of OGT activity by which immune defense is critically controlled in LPS-stimulated innate immune response. 相似文献
46.
The effect of frequency of alternating current during ohmic heating on electrode corrosion, heating rate, inactivation of food-borne pathogens, and quality of salsa was investigated. The impact of waveform on heating rate was also investigated. Salsa was treated with various frequencies (60 Hz to 20 kHz) and waveforms (sine, square, and sawtooth) at a constant electric field strength of 12.5 V/cm. Electrode corrosion did not occur when the frequency exceeded 1 kHz. The heating rate of the sample was dependent on frequency up to 500 Hz, but there was no significant difference (P > 0.05) in the heating rate when the frequency was increased above 1 kHz. The electrical conductivity of the sample increased with a rise in the frequency. At a frequency of 60 Hz, the square wave produced a lower heating rate than that of sine and sawtooth waves. The heating rate between waveforms was not significantly (P > 0.05) different when the frequency was >500 Hz. As the frequency increased, the treatment time required to reduce Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium to below the detection limit (1 log CFU/g) decreased without affecting product quality. These results suggest that ohmic heating can be effectively used to pasteurize salsa and that the effect of inactivation is dependent on frequency and electrical conductivity rather than waveform. 相似文献
47.
Jang Hye Jin Choi Ji Yeon Kim Kangjoon Yong Seung Hyun Kim Yeon Wook Kim Song Yee Kim Eun Young Jung Ji Ye Kang Young Ae Park Moo Suk Kim Young Sam Cho Young-Jae Lee Sang Hoon 《Respiratory research》2021,22(1):1-9
IL-35 subunit EBI3 is up-regulated in pulmonary fibrosis tissues. In this study, we investigated the pathological role of EBI3 in pulmonary fibrosis and dissected the underlying molecular mechanism. Bleomycin-induced pulmonary fibrosis mouse model was established, and samples were performed gene expression analyses through RNAseq, qRT-PCR and Western blot. Wild type and EBI3 knockout mice were exposed to bleomycin to investigate the pathological role of IL-35, via lung function and gene expression analyses. Primary lung epithelial cells were used to dissect the regulatory mechanism of EBI3 on STAT1/STAT4 and STAT3. IL-35 was elevated in both human and mouse with pulmonary fibrosis. EBI3 knockdown aggravated the symptoms of pulmonary fibrosis in mice. EBI3 deficiency enhanced the expressions of fibrotic and extracellular matrix-associated genes. Mechanistically, IL-35 activated STAT1 and STAT4, which in turn suppressed DNA enrichment of STAT3 and inhibited the fibrosis process. IL-35 might be one of the potential therapeutic targets for bleomycin-induced pulmonary fibrosis. 相似文献
48.
A region in domain 1 of CD4 distinct from the primary gp120 binding site is involved in HIV infection and virus-mediated fusion. 总被引:7,自引:0,他引:7
A Truneh D Buck D R Cassatt R Juszczak S Kassis S E Ryu D Healey R Sweet Q Sattentau 《The Journal of biological chemistry》1991,266(9):5942-5948
The high affinity binding site for human immunodeficiency virus (HIV) envelope glycoprotein gp120 resides within the amino-terminal domain (D1) of CD4. Mutational and antibody epitope analyses have implicated the region encompassing residues 40-60 in D1 as the primary binding site for gp120. Outside of this region, a single residue substitution at position 87 abrogates syncytium formation without affecting gp120 binding. We describe two groups of CD4 monoclonal antibodies (mAbs) which recognize distinct epitopes associated with these regions in D1. These mAbs distinguish between the gp120 binding event and virus infection and virus-induced cell fusion. One cluster of mAbs, which bind at or near the high affinity gp120 binding site, blocked gp120 binding to CD4 and, as expected, also blocked HIV infection of CD4+ cells and virus-induced syncytium formation. A second cluster of mAbs, which recognize the CDR-3 like loop, did not block gp120 binding as demonstrated by their ability to form ternary complexes with CD4 and gp120. Yet, these mAbs strongly inhibited HIV infection of CD4+ cells and HIV-envelope/CD4-mediated syncytium formation. The structure of D1 has recently been solved at atomic resolution and in its general features resembles IgVk regions as predicted from sequence homology and mAb epitopes. In the D1 structure, the regions recognized by these two groups of antibodies correspond to the C'C" (Ig CDR2) and FG (Ig CDR3) hairpin loops, respectively, which are solvent-exposed beta turns protruding in two different directions on a face of D1 distal to the D2 domain. This face is straddled by the longer BC (Ig CDR1) loop which bisects the plain formed by C'C' and FG. This structure is consistent with C'C' and FG forming two distinct epitope clusters within D1. We conclude that the initial interaction between gp120 and CD4 is not sufficient for HIV infection and syncytium formation and that CD4 plays a critical role in the subsequent virus-cell and cell-cell membrane fusion events. We propose that the initial binding of CD4 to gp120 induces conformational changes in gp120 leading to subsequent interactions of the FG loop with other regions in gp120 or with the fusogenic gp41 potion of the envelope gp160 glycoprotein. 相似文献
49.
Multiple Forms of Phospholipase D following Germination and during Leaf Development of Castor Bean 总被引:5,自引:2,他引:5 下载免费PDF全文
Multiple molecular forms of phospholipase D (PLD; EC 3.1.4.4) were identified and partially characterized in endosperm of germinated seeds and leaves of castor bean (Ricinus communis L. var Hale). The different PLD forms were resolved by nondenaturing polyacrylamide gel electrophoresis, isoelectric focusing, and size-exclusion chromatography. PLD was detected with both a PLD activity assay and immunoblots with PLD-specific antibodies. There were three major forms of PLD, designated types 1, 2, and 3, based on their mobility during nondenaturing polyacrylamide gel electrophoresis. Molecular masses of the PLD variants were estimated at 330, 230, and 270 kD for the types 1, 2, and 3, respectively. Isoelectric points of the native type 1, 2, and 3 PLDs were approximately 6.2, 4.9, and 4.8. Under the in vitro assay conditions used, the three forms of PLD exhibited the same substrate specificity, hydrolyzing phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylglycerol (PG) but not phosphatidylserine (PS) and phosphatidylinositol (PI). The three forms of PLD differed in their substrate preferences, and the order of activities was: PLD 1, PE > PG = PC; PLD 2, PE > PG > PC; PLD 3, PE = PG = PC. The Km values of PLDs 1, 2, and 3 for PC were 1.92, 2.62, and 5.18 mM, respectively. These PLDs were expressed differentially following seed germination and during leaf development. Type 1 was found in the early stages of seedling growth and in young leaves, type 2 was present in all the tissues and growth stages examined, and type 3 was expressed in senescent tissues. The PLDs shifted from largely cytosolic to predominantly membrane-associated forms during leaf development. The present studies demonstrate the structural heterogeneity of plant PLD and growth stage-specific expression of different molecular forms. The possible role for the occurrence of multiple molecular forms of PLD in cellular metabolism is discussed. 相似文献
50.
Alzheimer’s disease (AD) is characterized by an excessive accumulation of toxic amyloid beta (Aβ) plaques and memory dysfunction. The onset of AD is influenced by age, genetic background, and impaired glucose metabolism in the brain. Several studies have demonstrated that diabetes involving insulin resistance and glucose tolerance could lead to AD, ultimately resulting in cognitive dysfunction. Even though the relationship between diabetes and AD was indicated by significant evidences, the critical mechanisms and metabolic alterations in diabetes induced AD are not clear until now. Recently, iron metabolism has been shown to play multiple roles in the central nervous system (CNS). Iron deficiency and overload are associated with neurodegenerative diseases. Iron binds to Aβ and subsequently regulates Aβ toxicity in the CNS. In addition, previous studies have shown that iron is involved in the aggravation of insulin resistance. Considering these effects of iron metabolism in CNS, we expect that iron metabolism may play crucial roles in diabetic AD brain. Thus, we review the recent evidence regarding the relationship between diabetes-induced AD and iron metabolism. 相似文献