首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5923篇
  免费   416篇
  国内免费   4篇
  2023年   26篇
  2022年   90篇
  2021年   133篇
  2020年   81篇
  2019年   106篇
  2018年   147篇
  2017年   137篇
  2016年   187篇
  2015年   306篇
  2014年   367篇
  2013年   410篇
  2012年   547篇
  2011年   504篇
  2010年   323篇
  2009年   253篇
  2008年   367篇
  2007年   297篇
  2006年   281篇
  2005年   263篇
  2004年   256篇
  2003年   208篇
  2002年   154篇
  2001年   92篇
  2000年   126篇
  1999年   80篇
  1998年   43篇
  1997年   34篇
  1996年   22篇
  1995年   23篇
  1994年   13篇
  1993年   29篇
  1992年   39篇
  1991年   36篇
  1990年   33篇
  1989年   22篇
  1988年   29篇
  1987年   21篇
  1986年   15篇
  1985年   19篇
  1984年   16篇
  1983年   16篇
  1982年   13篇
  1980年   14篇
  1979年   18篇
  1978年   11篇
  1976年   12篇
  1974年   15篇
  1973年   11篇
  1969年   12篇
  1968年   11篇
排序方式: 共有6343条查询结果,搜索用时 15 毫秒
111.
Autophagy is a cellular degradation-recycling system for aggregated proteins and damaged organelles. Although dysregulated autophagy is implicated in various diseases including neurodegeneration, its role in pancreatic beta cells and glucose homeostasis has not been described. We produced mice with beta cell-specific deletion of Atg7 (autophagy-related 7). Atg7 mutant mice showed impaired glucose tolerance and decreased serum insulin level. beta cell mass and pancreatic insulin content were reduced because of increased apoptosis and decreased proliferation of beta cells. Physiological studies showed reduced basal and glucose-stimulated insulin secretion and impaired glucose-induced cytosolic Ca2+ transients in autophagy-deficient beta cells. Morphologic analysis revealed accumulation of ubiquitinated protein aggregates colocalized with p62, which was accompanied by mitochondrial swelling, endoplasmic reticulum distension, and vacuolar changes in beta cells. These results suggest that autophagy is necessary to maintain structure, mass and function of pancreatic beta cells, and its impairment causes insulin deficiency and hyperglycemia because of abnormal turnover and function of cellular organelles.  相似文献   
112.
113.
In this study, galactooligosaccharide (GOS) was synthesized using active β-galactosidase (beta-gal) inclusion bodies (IBs)- containing Escherichia coli (E. coli) cells. Analysis by MALDI-TOF (matrix-assisted laser desorption/ionizationtime of flight) mass spectrometry revealed that a trisaccharide was the major constituent of the synthesized GOS mixture. Additionally, the optimal pH, lactose concentration, amounts of E. coli β-gal IBs, and temperature for GOS synthesis were 7.5, 500 g/l, 3.2 U/ml, and 37 °C, respectively. The total GOS yield from 500 g/l of lactose under these optimal conditions was about 32%, which corresponded to 160.4 g/l of GOS. Western blot analyses revealed that β-gal IBs were gradually destroyed during the reaction. In addition, when both the reaction mixture and E. coli β-gal hydrolysate were analyzed by high-performance thin-layer chromatography (HP-TLC), the trisaccharide was determined to be galactosyl lactose, indicating that a galactose moiety was most likely transferred to a lactose molecule during GOS synthesis. This GOS synthesis system might be useful for the synthesis of galactosylated drugs, which have recently received significant attention owing to the ability of the galactose molecules to improve the drugs solubility while decreasing their toxicity. β-Gal IB utilization is potentially a more convenient and economic approach to enzymatic GOS synthesis, since no enzyme purification steps after the transgalactosylation reaction would be required.  相似文献   
114.
Phellinus linteus is a fungus which is found primarily in tropical regions of the Americas, Africa, and Asia.P. linteus has been used in traditional medical practice for the treatment of arthritis, liver damage and cancer. Angiogenesis is a process that involves migration, proliferation and cell differentiation, as well as the formation of new capillary structures. The anti-angiogenic activities evidenced by natural compounds may actually be a critical effect for the inhibition of angiogenesis-dependent disease by these agents via the blockage of vascular development. This study assessed the effects of water extracts fromP. linteus (Phellinus extracts) on primary cultured porcine coronary artery endothelial cells (PCAECs).Phellinus extracts induced no changes in DNA synthesis or cell numbers, but inhibited the migration of PCAECs.Phellinus extracts also induced a reduction in the secretion of matrix metalloproteinase-2 (MMP-2) and MMP-9. Our results show that, in endothelial cells,Phellinus extracts may inhibit angiogenesis by reducing levels of MMP-2 and MMP-9 secretion.  相似文献   
115.
116.
Degradation of polysaccharides by cellulases and xylanases plays an important role in the carbon cycle, but only occurs in plant cell walls, a few bacteria and some animals. This process is also critical in processes such as biomass degradation and fuel production in the conversion cycles of cellulosic biomass. The enzyme CelM2 is bifunctional, because it is able to effectively hydrolyze barley glucan and xylan. Here, we show the crystal structure of the bifunctional enzyme CelM2, isolated from a metagenome library, and describe the sequence information and structure of its two domains. We believe that CelM2 is attractive as an industrial enzyme and that the structural results presented herein provide insights that are relevant to the genetic engineering of multifunctional enzymes.  相似文献   
117.
118.
An amperometric glucose biosensor was designed for the detection of glucose in blood, urine, beverages, and fermentation systems. In typical glucose biosensors that employ enzymes, mediators are used for efficient electron transfer between the enzymes and the electrode. However, some of these mediators are known to be toxic to the enzymes and also must be immobilized on the surface of the electrode. We propose a mediator-free glucose biosensor that uses a glucose oxidase immobilized on a tin oxide electrode. Direct electron transfer is possible in this system because the tin oxide has redox properties similar to those of mediators. The method for immobilization of the glucose oxidase onto the tin oxide is also very simple. Tin oxide was prepared by the anodization and annealing of pure tin, and this provides a large surface area for the immobilization step because of its porosity. Glucose oxidase was immobilized onto the tin oxide using the membrane entrapment method. The proposed method provides a simple process for fabricating the enzyme electrode. Glucose oxidase immobilized onto the tin oxide, prepared in accordance with this method, has a relatively large current response when comparedto those of other glucose biosensors. The sensitivity of the biosensor was 19.55 μA/mM, and a linear response was observed between 0∼3 mM glucose. This biosensor demonstrated good reproducibility and stability.  相似文献   
119.
Alzheimer’s disease (AD) is characterized by an excessive accumulation of toxic amyloid beta (Aβ) plaques and memory dysfunction. The onset of AD is influenced by age, genetic background, and impaired glucose metabolism in the brain. Several studies have demonstrated that diabetes involving insulin resistance and glucose tolerance could lead to AD, ultimately resulting in cognitive dysfunction. Even though the relationship between diabetes and AD was indicated by significant evidences, the critical mechanisms and metabolic alterations in diabetes induced AD are not clear until now. Recently, iron metabolism has been shown to play multiple roles in the central nervous system (CNS). Iron deficiency and overload are associated with neurodegenerative diseases. Iron binds to Aβ and subsequently regulates Aβ toxicity in the CNS. In addition, previous studies have shown that iron is involved in the aggravation of insulin resistance. Considering these effects of iron metabolism in CNS, we expect that iron metabolism may play crucial roles in diabetic AD brain. Thus, we review the recent evidence regarding the relationship between diabetes-induced AD and iron metabolism.  相似文献   
120.
Viveiros AT  So N  Komen J 《Theriogenology》2000,54(9):1395-1408
Methods for cryopreserving spermatozoa and optimizing sperm:egg dilution ratio in African catfish Clarias gariepinus were developed. Five percent to 25% DMSO and methanol were tested as cryoprotectants, by diluting semen in Ginzburg fish ringer and freezing in 1-milliliter cryovials in a programmable freezer. To avoid an excess of spermatozoa per egg, post-thaw semen was diluted 1:20, 1:200 or 1:2,000 before fertilization. Highest hatching rates were obtained by spermatozoa frozen in 10% methanol and post-thaw diluted to 1:200. Then, slow freezing rates (-2, -5 or -10 degrees C/min) to various endpoint temperatures (range -25 to -70 degrees C) before fast freezing in liquid nitrogen (LN2) were evaluated. Hatching rates equal to control (P > 0.05) were obtained by spermatozoa frozen at -5 degrees C/min to -45 to -50 degrees C and at -10 degrees C/min to -55 degrees C. In 3-step freezing programs, at -5 degrees C/min, the effect of holding spermatozoa for 0, 2 or 5 min at -30, -35 or -40 degrees C before fast freezing in LN2 was analyzed. Hatching rates equal to control (P > 0.05) were produced by spermatozoa frozen to, and held at, -35 degrees C for 5 min and at -40 degrees C for 2 or 5 min. Finally, frozen spermatozoa (10% methanol, -5 degrees C/min, 5-min hold at -40 degrees C, LN2, post-thaw diluted to 1:200) were tested in on-farm fertilization conditions. Again, no difference (P > 0.05) in hatching rate was observed between frozen and fresh spermatozoa. Cryopreservation offers utility as a routine method of sperm storage and management for catfish.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号