首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8965篇
  免费   643篇
  国内免费   8篇
  2024年   10篇
  2023年   33篇
  2022年   109篇
  2021年   209篇
  2020年   148篇
  2019年   170篇
  2018年   294篇
  2017年   235篇
  2016年   362篇
  2015年   559篇
  2014年   600篇
  2013年   662篇
  2012年   850篇
  2011年   782篇
  2010年   474篇
  2009年   405篇
  2008年   559篇
  2007年   534篇
  2006年   434篇
  2005年   372篇
  2004年   376篇
  2003年   326篇
  2002年   240篇
  2001年   130篇
  2000年   128篇
  1999年   99篇
  1998年   51篇
  1997年   46篇
  1996年   26篇
  1995年   27篇
  1994年   13篇
  1993年   17篇
  1992年   28篇
  1991年   28篇
  1990年   25篇
  1989年   17篇
  1988年   20篇
  1987年   18篇
  1986年   13篇
  1985年   15篇
  1984年   14篇
  1983年   9篇
  1980年   9篇
  1976年   14篇
  1974年   13篇
  1973年   11篇
  1971年   9篇
  1970年   8篇
  1969年   10篇
  1968年   10篇
排序方式: 共有9616条查询结果,搜索用时 15 毫秒
101.
IL-35 subunit EBI3 is up-regulated in pulmonary fibrosis tissues. In this study, we investigated the pathological role of EBI3 in pulmonary fibrosis and dissected the underlying molecular mechanism. Bleomycin-induced pulmonary fibrosis mouse model was established, and samples were performed gene expression analyses through RNAseq, qRT-PCR and Western blot. Wild type and EBI3 knockout mice were exposed to bleomycin to investigate the pathological role of IL-35, via lung function and gene expression analyses. Primary lung epithelial cells were used to dissect the regulatory mechanism of EBI3 on STAT1/STAT4 and STAT3. IL-35 was elevated in both human and mouse with pulmonary fibrosis. EBI3 knockdown aggravated the symptoms of pulmonary fibrosis in mice. EBI3 deficiency enhanced the expressions of fibrotic and extracellular matrix-associated genes. Mechanistically, IL-35 activated STAT1 and STAT4, which in turn suppressed DNA enrichment of STAT3 and inhibited the fibrosis process. IL-35 might be one of the potential therapeutic targets for bleomycin-induced pulmonary fibrosis.  相似文献   
102.
103.
PurposeTP53, encoding the protein p53, is among the most frequently mutated genes in all cancers. A high frequency of 60 – 90% mutations is seen in esophageal squamous cell carcinoma (ESCC) patients. Certain p53 mutants show gain-of-function (GoF) oncogenic features unrelated to its wild type functions.MethodsThis study functionally characterized a panel of p53 mutants in individual ESCC cell lines and assayed for GoF oncogenic properties.ResultsThe ESCC cell line with endogenous p53R248Q expression showed suppressed tumor growth in an immunocompromised mouse model and suppressed colony growth in in vitro three-dimensional culture, when depleted of the endogenous p53 protein expression. This suppression is accompanied by suppressed cell cycle progression, along with reduced integrin expression and decreased focal adhesion kinase and extracellular-regulated protein kinase signaling and can be compensated by expression of a constitutively active mitogen-activated protein. P53R248Q enhances cell proliferation upon glutamine deprivation, as compared to other non-GoF mutants.ConclusionsIn summary, study of the functional contributions of endogenous p53 mutants identified a novel GoF mechanism through which a specific p53 mutant exerts oncogenic features and contributes to ESCC tumorigenesis.  相似文献   
104.
Phytochromes are plant photoreceptors that perceive red and far-red light. Upon the perception of light in Arabidopsis, light-activated phytochromes enter the nucleus and act on a set of interacting proteins, modulating their activities and thereby altering the expression levels of ~10% of the organism’s entire gene complement. Phytochromeinteracting factors (PIFs) belonging to Arabidopsis basic helix-loop-helix (bHLH) subgroup 15 are key interacting proteins that play negative roles in light responses. Their activities are post-translationally countered by light-activated phytochromes, which promote the degradation of PIFs and directly or indirectly inhibit their binding to DNA. The PIFs share a high degree of similarity, but examinations of pif single and multiple mutants have indicated that they have shared and distinct functions in various developmental and physiological processes. These are believed to stem from differences in both intrinsic protein properties and their gene expression patterns. In an effort to clarify the basis of these shared and distinct functions, we compared recently published genome-wide ChIP data, developmental gene expression maps, and responses to various stimuli for the various PIFs. Based on our observations, we propose that the biological roles of PIFs stem from their shared and distinct DNA binding targets and specific gene expression patterns.  相似文献   
105.
Cdc25B is an essential regulator for meiotic resumption in mouse oocytes. However, the role of this phosphatase during the later stage of the meiotic cell cycle is not known. In this study, we investigated the role of Cdc25B during metaphase II (MII) arrest in mouse oocytes. Cdc25B was extensively phosphorylated during MII arrest with an increase in the phosphatase activity toward Cdk1. Downregulation of Cdc25B by antibody injection induced the formation of a pronucleus-like structure. Conversely, overexpression of Cdc25B inhibited Ca2+-mediated release from MII arrest. Moreover, Cdc25B was immediately dephosphorylated and hence inactivated during MII exit, suggesting that Cdk1 phosphorylation is required to exit from MII arrest. Interestingly, this inactivation occurred prior to cyclin B degradation. Taken together, our data demonstrate that MII arrest in mouse oocytes is tightly regulated not only by the proteolytic degradation of cyclin B but also by dynamic phosphorylation of Cdk1.  相似文献   
106.
107.
Since 1858, when Hitchcock first recorded dinosaur tail traces from the Jurassic of Massachusetts, USA, a number of dinosaur tail traces have been reported. Although considered rare, at least 38 records of dinosaur tail traces have previously been reported in the literature. These occurrences are herein reviewed in order to understand their geographic and stratigraphic distribution, types of tail trace makers, and characteristics of dinosaur tail traces. Several terms for dinosaur tail traces have been employed and they are divided into tail impressions (TIs) for resting traces, and tail drag impressions (TDIs) for locomotion traces. Possible criteria for distinguishing, measuring and comparing TIs and TDIs are suggested. In addition, herringbone structures, one of the characteristic features of tail traces associated with ornithopod and theropod tracks, are discussed. Estimated speeds of tail trace makers are shown to be rather low. Finally, the abundance of tail traces associated with bipedal, rather than quadrupedal, dinosaurs is considered a reflection of behavior.  相似文献   
108.
Although more than 60 ancient hominid track sites ranging in age from 3.7 million to less than 500 B. P. are recorded from all continents except Antarctica, no ichnotaxonomic names have ever been formally proposed for hominid tracks. There is no prohibition to the naming of fossil footprints of species that created tracks and trackways similar to those of living species. On the contrary, there is precedent for the naming of ichnotaxa corresponding to the dominant extant vertebrates classes: mammals = Mammalipedia and birds = Avipeda. The hominid track site sample includes only about a dozen sites where footprint preservation is good enough to show details of diagnostic foot morphology and typical trackway morphology. We infer that the Acahualinca Footprint Museum site in Nicaragua represents the most important ancient hominid track site that combines accessibility, a large sample of well-preserved trackways and reliable dating. For this reason, we select the Nicaraguan tracks as the type sample for the new ichnotaxon Hominipes modernus ichnogen., and ichnsp. et ichnosp. nov., which we infer to represent fully modern Homo sapiens. Our preliminary investigations of other track sites suggest that the majority also yield H. modernus. However, at many sites preservation is insufficient to make an ichnotaxonomic designation at the species level or to infer that the trackmaker was H. sapiens. Thus, at many sites including the famous Laetoli site, we apply the more general label of Hominipes isp. indet.  相似文献   
109.
Heat shock may increase oxidative stress due to increased production of reactive oxygen species and/or the promotion of cellular oxidation events. Mitochondrial NADP+-dependent isocitrate dehydrogenase (IDPm) produces NADPH, an essential reducing equivalent for the antioxidant system. The protective role of IDPm against heat shock in HEK293 cells, an embryonic kidney cell line, was investigated in control and cells transfected with the cDNA for IDPm, where IDPm activity was 6–7 fold higher than that in the control cells carrying the vector alone. Upon exposure to heat shock, the viability was lower and the protein oxidation, lipid peroxidation and oxidative DNA damage were higher in control cells as compared to HEK293 cells in which IDPm was over-expressed. We also observed the significant difference in the cellular redox status reflected by the endogenous production of reactive oxygen species, NADPH pool and GSH recycling between two cells. The results suggest that IDPm plays an important role as an antioxidant defense enzyme in cellular defense against heat shock through the removal of reactive oxygen species.  相似文献   
110.
Aldose reductase (AR) is abundantly expressed in a variety of cell lineages and has been implicated in the cellular response against oxidative stress. However, the exact functional role of AR against oxidative stress remains relatively unclear. This study investigated the role of AR in acrolein- or hydrogen peroxide-induced apoptosis using the J774.A.1 macrophage cell line. Ablation of AR with a small interference RNA or inhibition of AR activity significantly enhanced the acrolein- or hydrogen peroxide-induced generation of reactive oxygen species and aldehydes, leading to increased apoptotic cell death. Blockade of AR activity in J774A.1 cells markedly augmented the acrolein- or hydrogen peroxide-induced translocation of Bax to mitochondria along with reduced Bcl-2 and increased release of cytochrome c from the mitochodria. Taken together, these findings indicate that AR plays an important role in the cellular response against oxidative stress, by sequestering the reactive molecules generated in cells exposed to toxic substances.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号