首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2017篇
  免费   137篇
  国内免费   2篇
  2156篇
  2022年   26篇
  2021年   51篇
  2020年   21篇
  2019年   28篇
  2018年   54篇
  2017年   36篇
  2016年   59篇
  2015年   102篇
  2014年   122篇
  2013年   136篇
  2012年   155篇
  2011年   181篇
  2010年   96篇
  2009年   75篇
  2008年   110篇
  2007年   94篇
  2006年   91篇
  2005年   65篇
  2004年   72篇
  2003年   72篇
  2002年   57篇
  2001年   24篇
  2000年   38篇
  1999年   28篇
  1998年   20篇
  1997年   17篇
  1996年   8篇
  1995年   12篇
  1993年   9篇
  1992年   20篇
  1991年   21篇
  1990年   21篇
  1989年   13篇
  1988年   17篇
  1987年   13篇
  1986年   12篇
  1985年   13篇
  1984年   12篇
  1978年   8篇
  1976年   12篇
  1975年   7篇
  1974年   14篇
  1973年   11篇
  1972年   6篇
  1971年   7篇
  1970年   8篇
  1969年   10篇
  1968年   10篇
  1967年   7篇
  1965年   6篇
排序方式: 共有2156条查询结果,搜索用时 15 毫秒
991.

Background

Excessive melanin production and accumulation are characteristics of a large number of skin diseases, including melasma, and post-inflammatory hyperpigmentation. During our on-going search for new agents with an inhibitory effect on tyrosinase, we synthesized a new type of tyrosinase inhibitor, 4-(thiazolidin-2-yl)benzene-1,2-diol (MHY-794), which directly inhibits mushroom tyrosinase.

Methods

The inhibitory effect of MHY-794 on tyrosinase activity and nitric oxide (NO) scavenging activity was evaluated in cell free system. Additional experiments were performed using B16F10 melanoma cells to demonstrate the effects of MHY-794 in vitro. HRM2 hairless mice were used to evaluate anti-melanogenic effects of MHY-794 in vivo.

Results

MHY-794 effectively inhibited mushroom tyrosinase activity in cell free system. In silico docking simulation also supported the inhibitory effects of MHY-794 on mushroom tyrosinase. MHY-794 also proved to be effective at scavenging nitric oxide (NO), which serves as an important modulator in the melanogenesis signaling pathway. In addition, MHY-794 effectively inhibited SNP (NO donor)-induced melanogenesis by directly inhibiting tyrosinase and diminishing NO-mediated melanogenesis signaling in B16 melanoma cells. The anti-melanogenic effects of MHY-794 were further confirmed in HRM2 hairless mice. Ultraviolet light (UV) significantly up-regulated NO-mediated melanogenesis signaling in HRM2 hairless mice, but MHY-794 effectively inhibited both melanogenesis and diminished UV-induced NO-signaling.

Conclusions

Our results indicate that MHY-794 is highly effective at inhibiting NO-mediated melanogenesis in vitro and in vivo by direct NO scavenging and directly inhibiting tyrosinase activity, and suggest that MHY-794 be considered a new developmental candidate for the treatment of hyper-pigmentation disorders.

General significance

MHY-794, which showed great efficacy on NO-mediated melanogenesis by direct NO scavenging as well as direct inhibition of tyrosinase catalytic activity, might be utilized for the development of a new candidate for treatment of the hyper-pigmentation disorders.  相似文献   
992.
The limited treatment option for recurrent prostate cancer and the eventual resistance to conventional chemotherapy drugs has fueled continued interest in finding new anti‐neoplastic agents of natural product origin. We previously reported anti‐proliferative activity of deoxypodophyllotoxin (DPT) on human prostate cancer cells. Using the PC‐3 cell model of human prostate cancer, the present study reveals that DPT induced apoptosis via a caspase‐3‐dependent pathway that is activated due to dysregulated mitochondrial function. DPT‐treated cells showed accumulation of the reactive oxygen species (ROS), intracellular Ca surge, increased mitochondrial membrane potential (MMP, ΔΨm), Bax protein translocation to mitochondria and cytochrome c release to the cytoplasm. This resulted in caspase‐3 activation, which in turn induced apoptosis. The antioxidant N‐acetylcysteine (NAC) reduced ROS accumulation, MMP and Ca surge, on the other hand the Ca2+ chelator BAPTA inhibited the Ca overload and MMP without affecting the increase of ROS, indicating that the generation of ROS occurred prior to Ca2+ flux. This suggested that both ROS and Ca signaling play roles in the increased MMP via Ca‐dependent and/or ‐independent mechanisms, since ΔΨm elevation was reversed by NAC and BAPTA. This study provides the first evidence for the involvement of both ROS‐ and Ca‐activated signals in the disruption of mitochondrial homeostasis and the precedence of ROS production over the failure of Ca2+ flux homeostasis. J. Cell. Biochem. 114: 1124–1134, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
993.
Anabaena sensory rhodopsin transducer (ASRT) is believed to be a major player in the photo-signal transduction cascade, which is triggered by Anabaena sensory rhodopsin. Here, we characterized DNA binding activity of ASRT probed by using fluorescence correlation spectroscopy. We observed clear decrease of diffusion coefficient of DNA upon binding of ASRT. The dissociation constant, KD, of ASRT to 20?bp-long DNA fragments lied in micro-molar range and varied moderately with DNA sequence. Our results suggest that ASRT may interact with several different regions of DNA with different binding affinity for global regulation of several genes that need to be activated depending on the light illumination.  相似文献   
994.
Benzimidazole and indane are the two key fragments in our potent and selective MCH-1 receptor (MCHR1) antagonists. To identify novel linkers connecting the two fragments, we investigated diamino-cycloalkane-derived analogs and discovered highly potent antagonists with cis-1,4-diaminocyclohexane as a unique spacer in this chemical class. Structural overlay suggested that cis-1-substituted-4-aminocyclohexane functions as a bioisostere of 4-substituted-piperidine and that the active conformation adopts a U-shaped orientation.  相似文献   
995.
Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5/GPR49) is highly expressed in adult stem cells of various tissues, such as intestine, hair follicles, and stomach. LGR5 is also overexpressed in some colon and ovarian tumors. Recent reports show that R-spondin (RSPO) family ligands bind to and activate LGR5, enhancing canonical Wnt signaling via the interaction with LRP5/6 and Frizzled. The identity of heterotrimeric G-proteins coupled to LGR5, however, remains unclear. Here, we show that Rho GTPase is a downstream target of LGR5. Overexpression of LGR5 induced SRF-RE luciferase activity, a reporter of Rho signaling. RSPOs, ligands for LGR4, LGR5, and LGR6, however, did not induce SRF-RE reporter activity in the presence of LGR5. Consistently, LGR5-induced activity of the SRF-RE reporter was inhibited by Rho inhibitor C3 transferase and RhoA N19 mutant, and knockdown of Gα12/13 genes blocked the reporter activity induced by LGR5. In addition, focal adhesion kinase, NF-κB and c-fos, targets of Rho GTPase, were shown to be regulated by LGR5. Here, we have demonstrated, for the first time, that LGR5 is coupled to the Rho pathway through G12/13 signaling.  相似文献   
996.
Glutathione (GSH) plays a critical role in cellular defense against unregulated oxidative stress in mammalian cells including neurons. We previously demonstrated that GSH decrease using [D, L]-buthionine sulphoximine (BSO) induces retinal cell death, but the underlying mechanisms of this are still unclear. Here, we demonstrated that retinal GSH level is closely related to retinal cell death as well as expression of an anti-apoptotic molecule, Bcl-2, in the retina. We induced differential expression of retinal GSH by single and multiple administrations of BSO, and examined retinal GSH levels and retinal cell death in vivo. Single BSO administration showed a transient decrease in the retinal GSH level, whereas multiple BSO administration showed a persistent decrease in the retinal GSH level. Retinal cell death also showed similar patterns: transient increases of retinal cell death were observed after single BSO administration, whereas persistent increases of retinal cell death were observed after multiple BSO administration. Changes in the retinal GSH level affected Bcl-2 expression in the retina. Immunoblot and immunohistochemical analyses showed that single and multiple administration of BSO induced differential expressions of Bcl-2 in the retina. Taken together, the results of our study suggest that the retinal GSH is important for the survival of retinal cells, and retinal GSH appears to be deeply related to Bcl-2 expression in the retina. Thus, alteration of Bcl-2 expression may provide a therapeutic tool for retinal degenerative diseases caused by retinal oxidative stress such as glaucoma or retinopathy.  相似文献   
997.
998.
Studies on the mass production of high-quality plantlets in Gypsophila paniculata L. using a bioreactor and microponic system (a hydroponic system in which micropropagation shoots are planted) indicated that both aeration treatments, in which bioreactors were aerated from the top of explants by sparger (AS) and by tub (AT), were more effective than unaerated treatment for shoot proliferation and growth, and the maximum shoots (15.7 shoots per explant) with low hyperhydricity rate (2.9%) were found in the AS group. The ex vitro culture was more efficient for rooting when compared to the in vitro culture; the better shoot and root growth was obtained in the ex vitro culture, with rooting rate reaching 100% after 20 d of culture, but only 65% of in vitro shoots rooted; all stomata of ex vitro shoots closed, and their length was more than their width, but the stomata in in vitro shoots were all opened, the length close to the width. Furthermore, the stomata numbers were less in ex vitro (67.8) than in vitro (267.2). The survival rate of ex vitro plants reached 83.3% when plantlets derived in vitro and ex vitro were transferred to pots, while only 23.3% of in vitro plantlets survived. During ex vitro rooting with the microponic system, foam as the supporter material, 90 μmol?m?2?s?1 of light, and 80 shoots of planting density were favorable for shoot and root growth. The combination of bioreactor and microponic systems is an efficient way to produce high-quality plantlets of G. paniculata. Their application can reduce costs during large-scale industrial production.  相似文献   
999.
1000.
Mitochondria dynamics controls not only their morphology but also functions of mitochondria. Therefore, an imbalance of the dynamics eventually leads to mitochondria disruption and cell death. To identify specific regulators of mitochondria dynamics, we screened a bioactive chemical compound library and selected Tyrphostin A9, a tyrosine kinase inhibitor, as a potent inducer of mitochondrial fission. Tyrphostin A9 treatment resulted in the formation of fragmented mitochondria filament. In addition, cellular ATP level was decreased and the mitochondrial membrane potential was collapsed in Tyr A9-treated cells. Suppression of Drp1 activity by siRNA or over-expression of a dominant negative mutant of Drp1 inhibited both mitochondrial fragmentation and cell death induced by Tyrpohotin A9. Moreover, treatment of Tyrphostin A9 also evoked mitochondrial fragmentation in other cells including the neuroblastomas. Taken together, these results suggest that Tyrphostin A9 induces Drp1-mediated mitochondrial fission and apoptotic cell death.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号