首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1954篇
  免费   224篇
  国内免费   1篇
  2021年   19篇
  2019年   15篇
  2016年   17篇
  2015年   37篇
  2014年   47篇
  2013年   64篇
  2012年   74篇
  2011年   86篇
  2010年   48篇
  2009年   61篇
  2008年   65篇
  2007年   66篇
  2006年   81篇
  2005年   76篇
  2004年   64篇
  2003年   57篇
  2002年   55篇
  2001年   49篇
  2000年   56篇
  1999年   57篇
  1998年   18篇
  1997年   16篇
  1996年   21篇
  1995年   25篇
  1994年   15篇
  1993年   15篇
  1992年   50篇
  1991年   41篇
  1990年   44篇
  1989年   48篇
  1988年   44篇
  1987年   47篇
  1986年   33篇
  1985年   33篇
  1984年   46篇
  1983年   39篇
  1982年   32篇
  1981年   27篇
  1980年   28篇
  1979年   33篇
  1978年   32篇
  1977年   33篇
  1976年   22篇
  1975年   28篇
  1974年   30篇
  1973年   47篇
  1972年   30篇
  1971年   21篇
  1970年   21篇
  1969年   24篇
排序方式: 共有2179条查询结果,搜索用时 17 毫秒
141.
The existence of a culturing bias has long been known when sampling organisms from the environment. This bias underestimates microbial diversity and does not accurately reflect the most ecologically relevant species. Until now no study has examined the effects of culture bias on viral populations. We have employed culture-independent methods to assess the diversity of Sulfolobus spindle–shaped viruses (SSVs) from extremely hyperthermal environments. This diversity is then compared to the viral diversity of cultured samples. We detected a clear culturing bias between environmental samples and cultured isolates. This is the first study identifying a culture bias in a viral population.  相似文献   
142.
Abundant recent evidence favors a neurotransmitter/neuromodulator role for D-serine. D-serine is synthesized from L-serine by serine racemase in astrocytic glia that ensheath synapses, especially in regions of the brain that are enriched in NMDA-glutamate receptors. D-serine is more potent than glycine at activating the 'glycine' site of these receptors. Moreover, selective degradation of D-serine but not glycine by D-amino acid oxidase markedly reduces NMDA neurotransmission. D-serine appears to be released physiologically in response to activation by glutamate of AMPA-glutamate receptors on D-serine-containing glia. This causes glutamate-receptor-interacting protein, which binds serine racemase, to stimulate enzyme activity and D-serine release. Thus, glutamate triggers the release of D-serine so that the two amino acids can act together on postsynaptic NMDA receptors. D-serine also plays a role in neural development, being released from Bergmann glia to chemokinetically enhance the migration of granule cell cerebellar neurons from the external to the internal granular layer.  相似文献   
143.
The thesis advanced in this essay is that stem cells-particularly those in the nervous system-are components in a series of inborn 'programs' that not only ensure normal development, but persist throughout life so as to maintain homeostasis in the face of perturbations-both small and great. These programs encode what has come to be called 'plasticity'. The stem cell is one of the repositories of this plasticity. This review examines the evidence that interaction between the neural stem cell (as a prototypical somatic stem cell) and the developing or injured brain is a dynamic, complex, ongoing reciprocal set of interactions where both entities are constantly in flux. We suggest that this interaction can be viewed almost from a 'systems biology' vantage point. We further advance the notion that clones of exogenous stem cells in transplantation paradigms may not only be viewed for their therapeutic potential, but also as biological tools for 'interrogating' the normal or abnormal central nervous system environment, indicating what salient cues (among the many present) are actually guiding the expression of these 'programs'; in other words, using the stem cell as a 'reporter cell'. Based on this type of analysis, we suggest some of the relevant molecular pathways responsible for this 'cross-talk' which, in turn, lead to proliferation, migration, cell genesis, trophic support, protection, guidance, detoxification, rescue, etc. This type of developmental insight, we propose, is required for the development of therapeutic strategies for neurodegenerative disease and other nervous system afflictions in humans. Understanding the relevant molecular pathways of stem cell repair phenotype should be a priority, in our view, for the entire stem cell field.  相似文献   
144.
By introducing additional T-DNA borders into a binary plasmid used in Agrobacterium-mediated plant transformation, previous studies have demonstrated that the marker gene and the gene of interest (GOI) can be carried by independent T-strands, which sometimes integrate in unlinked loci in the plant genome. This allows the recovery of marker-free transgenic plants through genetic segregation in the next generation. In this study, we have found that by repositioning the selectable marker gene in the backbone and leaving only the GOI in the T-DNA region, a regular two-border binary plasmid was able to generate marker-free transgenic maize plants more efficiently than a conventional single binary plasmid with multiple T-DNA borders. These results also provide evidence that both the right and left borders can initiate and terminate T-strands. Such non-canonical initiation and termination of T-strands may be the basis for the elevated frequencies of cotransformation and unlinked insertions.  相似文献   
145.
A series of novel curcumin analogs were synthesized and screened for anti-cancer and anti-angiogenesis activities at Emory University and at the National Cancer Institute (NCI). These compounds are symmetrical alpha,beta-unsaturated and saturated ketones. The majority of the analogs demonstrated a moderate degree of anti-cancer activity. Compounds 10, 11, and 14 exhibited a high degree of cytotoxicity in the NCI in vitro anti-cancer cell line screen. In addition, this screen revealed that these compounds inhibit tumor cell growth with a higher potency than the commonly used chemotherapeutic drug, cisplatin. In independent in vitro screens conducted at Emory, the same compounds plus 4, 5, 8, 9, and 13 exhibited a high degree of cytotoxicity to tumor cells. Analogs that were effective in the anti-cancer screens were also effective in in vitro anti-angiogenesis assays. Compounds 4, 9, 11, and 14 were most effective in the anti-angiogenesis assays run at Emory. In the assays conducted by the NCI, compound 14 was almost as potent as the anti-angiogenic drug TNP-470, which has undergone clinical trials. Based on the favorable in vitro anti-cancer and anti-angiogenesis results with 14, further in vivo tests were conducted. This compound effectively reduced the size of human breast tumors grown in female athymic nude mice and showed little toxicity. This data, coupled with the remarkable in vitro data, suggests that compound 14 may potentially be an effective chemotherapeutic agent. As a follow-up, a 3D quantitative structure relationship based on 14 has been developed. It shows a cross-validated r2(q2) and a predictive r2(p2) = 0.71. COMPARE analysis suggests the compound to be a possible RNA/DNA antimetabolite, but also implies that the compound's cytotoxicity may arise from a presently unknown mechanism.  相似文献   
146.
147.
Recent evidence indicates that translation elongation factor Tu (EF-Tu) has a role in the cell in addition to its well established role in translation. The translation factor binds to a specific region called the Gol region close to the N terminus of the T4 bacteriophage major head protein as the head protein emerges from the ribosome. This binding was discovered because EF-Tu bound to Gol peptide is the specific substrate of the Lit protease that cleaves the EF-Tu between amino acid residues Gly59 and lle60, blocking phage development. These experiments raised the question of why the Gol region of the incipient head protein binds to EF-Tu, as binding to incipient proteins is not expected from the canonical role of EF-Tu. Here, we use gol-lacZ translational fusions to show that cleavage of EF-Tu in the complex with Gol peptide can block translation of a lacZ reporter gene fused translationally downstream of the Gol peptide that activated the cleavage. We propose a model to explain how binding of EF-Tu to the emerging Gol peptide could cause translation to pause temporarily and allow time for the leader polypeptide to bind to the GroEL chaperonin before translation continues, allowing cotranslation of the head protein with its insertion into the GroEL chaperonin chamber, and preventing premature synthesis and precipitation of the head protein. Cleavage of EF-Tu in the complex would block translation of the head protein and therefore development of the infecting phage. Experiments are presented that confirm two predictions of this model. Considering the evolutionary conservation of the components of this system, this novel regulatory mechanism could be used in other situations, both in bacteria and eukaryotes, where proteins are cotranslated with their insertion into cellular structures.  相似文献   
148.
Structural features of paramyxovirus F protein required for fusion initiation   总被引:10,自引:0,他引:10  
On the basis of the coordinates of the related Newcastle disease virus (NDV) F protein, Valine-94, a determinant of measles virus (MV) cytopathicity, is predicted to lie in a cylindrical cavity with 10 A diameter located at the F neck. A 16-residue domain around V94 is functionally interchangeable between NDV and MV F, supporting our homology model. Features of the cavity are conserved within the Paramyxovirinae. A hydrophobic base and a hydrophilic residue at the rim are required for surface expression. Small residue substitutions predicted to open the cavity were found to disrupt transport or limit fusogenicity of transport-competent mutants but can be compensated for by simultaneous insertion of larger residues at the opposing wall. Variants containing histidine substitutions mediate fusion at pH 8.5, while at pH 7.2 fusion is blocked, suggesting that functionality requires low charge in the cavity. These results indicate that specific structural features of the cavity are essential for paramyxovirus fusion initiation.  相似文献   
149.
We provide evidence that copines, members of a ubiquitous family of calcium-dependent, membrane-binding proteins, may represent a universal transduction pathway for calcium signaling because we find copines are capable of interacting with a wide variety of "target" proteins including MEK1, protein phosphatase 5, and the CDC42-regulated kinase, that are themselves components of intracellular signaling pathways. The copine target proteins were identified by yeast two-hybrid screening and the interactions were verified in vitro using purified proteins. In the majority of cases the copine binds to a domain of the target protein that is predicted to form a characteristic coiled-coil. A consensus sequence for the coiled-coil copine-binding site was derived and found to have predictive value for identifying new copine targets. We also show that interaction with copines may result in recruitment of target proteins to membrane surfaces and regulation of the enzymatic activities of target proteins.  相似文献   
150.
Dbl family members are guanine nucleotide exchange factors specific for Rho guanosine triphosphatases (GTPases) and invariably possess tandem Dbl (DH) and pleckstrin homology (PH) domains. Dbs, a Dbl family member specific for Cdc42 and RhoA, exhibits transforming activity when overexpressed in NIH 3T3 mouse fibroblasts. In this study, the PH domain of Dbs was mutated to impair selectively either guanine nucleotide exchange or phosphoinositide binding in vitro and resulting physiological alterations were assessed. As anticipated, substitution of residues within the PH domain of Dbs integral to the interface with GTPases reduced nucleotide exchange and eliminated the ability of Dbs to transform NIH 3T3 cells. More interestingly, substitutions within the PH domain that prevent interaction with phosphoinositides yet do not alter in vitro activation of GTPases also do not transform NIH 3T3 cell and fail to activate RhoA in vivo despite proper subcellular localization. Therefore, the PH domain of Dbs serves multiple roles in the activation of GTPases and cannot be viewed as a simple membrane-anchoring device. In particular, the data suggest that binding of phosphoinositides to the PH domain within the context of membrane surfaces may direct orientations or conformations of the linked DH and PH domains to regulate GTPases activation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号