首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2049篇
  免费   228篇
  国内免费   1篇
  2278篇
  2021年   20篇
  2017年   14篇
  2016年   17篇
  2015年   40篇
  2014年   50篇
  2013年   66篇
  2012年   74篇
  2011年   88篇
  2010年   50篇
  2009年   65篇
  2008年   69篇
  2007年   71篇
  2006年   85篇
  2005年   78篇
  2004年   68篇
  2003年   58篇
  2002年   58篇
  2001年   54篇
  2000年   59篇
  1999年   62篇
  1998年   26篇
  1997年   18篇
  1996年   22篇
  1995年   31篇
  1994年   17篇
  1993年   19篇
  1992年   55篇
  1991年   41篇
  1990年   45篇
  1989年   50篇
  1988年   44篇
  1987年   47篇
  1986年   35篇
  1985年   33篇
  1984年   49篇
  1983年   40篇
  1982年   33篇
  1981年   29篇
  1980年   28篇
  1979年   33篇
  1978年   32篇
  1977年   34篇
  1976年   22篇
  1975年   29篇
  1974年   30篇
  1973年   48篇
  1972年   30篇
  1971年   21篇
  1970年   22篇
  1969年   24篇
排序方式: 共有2278条查询结果,搜索用时 15 毫秒
41.
Michael Snyder 《Chromosoma》1994,103(6):369-380
Microtubule organizing centers play an essential cellular role in nucleating microtubule assembly and establishing the microtubule array. The microtubule organizing center of yeast, the spindle pole body (SPB), shares many functions and properties with those other organisms. In recent years considerable new information has been generated concerning components associated with the SPB, and the mechanism by which it duplicates. This article reviews our current view of the cytology and molecular composition of the SPB of the budding yeast, Saccharomyces cerevisiae, and the fission yeast, Schizosaccharomyces pombe. Genetic studies in these organisms has revealed information about how the SPB duplicates and separates, and its roles during vegetative growth, mating and meiosis.  相似文献   
42.
43.
BACKGROUND: Nitric oxide is a messenger molecule of the nervous system, which is produced by the enzyme nitric oxide synthase, which may regulate cyclic guanosine monophosphate levels and which has been implicated in the control of neurotransmitter release. PC-12 pheochromocytoma cells differentiate to form neuronal cells in culture when they are exposed to nerve growth factor. The levels of cyclic guanosine monophosphate in the cells and their ability to release acetylcholine in response to K(+)-depolarization are both maximal after eight days of treatment with nerve growth factor. We set out to assess a possible role for nitric oxide in the processes that occur in differentiating PC-12 cells. RESULTS: Nitric oxide synthase is first evident in differentiating PC-12 cells eight days after beginning treatment with nerve growth factor, coinciding with the marked increase in K(+)-depolarization-induced release of acetylcholine. The release of both acetylcholine and dopamine in response to K(+)-depolarization is blocked by inhibitors of nitric oxide synthase and by hemoglobin, which binds nitric oxide. Providing l-arginine, a precursor required for nitric oxide synthesis, reverses the effects of the inhibitors. In synaptosomal preparations from the corpus striatum, inhibitors of nitric oxide synthase prevent the release of glutamate in response to the glutamate derivative N-methyl-d-aspartate but not in response to K(+)-depolarization. CONCLUSION: Nitric oxide may mediate the release of acetylcholine and dopamine in response to K(+)-depolarization in PC-12 cells and the release of glutamate in response to N-methyl-d-aspartate in striatal synaptosomes. Nitric oxide synthase expression is induced after eight days of treating PC-12 cells with nerve growth factor, coinciding with a marked enhancement of the release of neurotransmitters in response to K(+)-depolarization.  相似文献   
44.
Environmental DNA (eDNA) analysis is a powerful tool for remote detection of target organisms. However, obtaining quantitative and longitudinal information from eDNA data is challenging, requiring a deep understanding of eDNA ecology. Notably, if the various size components of eDNA decay at different rates, and we can separate them within a sample, their changing proportions could be used to obtain longitudinal dynamics information on targets. To test this possibility, we conducted an aquatic mesocosm experiment in which we separated fish-derived eDNA components using sequential filtration to evaluate the decay rate and changing proportion of various eDNA particle sizes over time. We then fit four alternative mathematical decay models to the data, building towards a predictive framework to interpret eDNA data from various particle sizes. We found that medium-sized particles (1–10 μm) decayed more slowly than other size classes (i.e., <1 and > 10 μm), and thus made up an increasing proportion of eDNA particles over time. We also observed distinct eDNA particle size distribution (PSD) between our Common carp and Rainbow trout samples, suggesting that target-specific assays are required to determine starting eDNA PSDs. Additionally, we found evidence that different sizes of eDNA particles do not decay independently, with particle size conversion replenishing smaller particles over time. Nonetheless, a parsimonious mathematical model where particle sizes decay independently best explained the data. Given these results, we suggest a framework to discern target distance and abundance with eDNA data by applying sequential filtration, which theoretically has both metabarcoding and single-target applications.  相似文献   
45.
In this paper, we consider several variations of the following basic tiling problem: given a sequence of real numbers with two size-bound parameters, we want to find a set of tiles of maximum total weight such that each tiles satisfies the size bounds. A solution to this problem is important to a number of computational biology applications such as selecting genomic DNA fragments for PCR-based amplicon microarrays and performing homology searches with long sequence queries. Our goal is to design efficient algorithms with linear or near-linear time and space in the normal range of parameter values for these problems. For this purpose, we first discuss the solution to a basic online interval maximum problem via a sliding-window approach and show how to use this solution in a nontrivial manner for many of the tiling problems introduced. We also discuss NP-hardness results and approximation algorithms for generalizing our basic tiling problem to higher dimensions. Finally, computational results from applying our tiling algorithms to genomic sequences of five model eukaryotes are reported.  相似文献   
46.
Platelet activating factor and the bioactive metabolites of arachidonic acid are secreted by alveolar macrophages in response to stimulation by phagocytic agents or calcium ionophore. We have previously shown a deacylation-acetylation sequence in the formation of 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine (PAF) from alkylacyl-(long chain)-GPC (Albert, D.H. and Snyder, F. (1983) J. Biol. Chem. 258, 97-102). This sequence may be an important source of 20:4 during inflammatory reactions since, in alveolar macrophages, the ether lipid precursor of PAF represents 35% of the choline glycerophospholipids and has a much higher content (35%) of 20:4 in the sn-2 position than does diacyl-GPC (17%). Alveolar macrophages prelabeled with 14C-labeled fatty acids (16:0, 18:1, 18:2 and 20:4) and [1-3H]alkyllyso-GPC were used to study the release of fatty acids from ether-linked and diacyl phospholipids. Each of these fatty acids was incorporated primarily into the choline glycerophospholipids of alveolar macrophages. The release of 20:4 from macrophage phospholipids was increased by treatment of the labeled cells with the calcium ionophore A23187 (2 microM) or zymosan (1 mg/ml), whereas the release of 16:0, 18:1 and 18:2 was not increased above control levels by either stimuli. Although more of the labeled 20:4 is released from the diacyl-GPC (50% of the total released), substantial amounts (44%) of 20:4 are derived from alkylacyl-GPC after incubating the stimulated cells for 60 min. The loss of 20:4 continued from the diacyl species throughout the incubation period studied, whereas a slower net release of 20:4 lost from the alkylacyl-GPC fraction was evident after 2 h. We conclude that the deacylation-reacylation cycle is an important aspect of the metabolism of 20:4 and alkylacyl-GPC during inflammatory stimulation of alveolar macrophages and that the deacylation of this ether-linked phospholipid (which is the first step in the formation of PAF) is responsible for a significant amount of the 20:4 released.  相似文献   
47.
48.
Using concentrations of [3H] dihydroergokryptine between 0.1 and 5 nM, saturable binding can be demonstrated in rat cerebral cortical membranes with a dissociation constant (KD) of about 0.8 nM. α-Noradrenergic agonists and antagonists compete for the sites labeled by these low concentrations of [3H] dihydroergokryptine with relative potencies characteristics of classical α-noradrenergic receptors. The very low potency of serotonin in competing for these binding sites indicates that, in contrast to findings with higher concentrations of [3H] DHE, low concentrations do not label serotonin receptors. Moreover, the low potency of dopamine in competing for [3H] dihydroergokryptine binding in both striatal and cortical membranes indicates that no detectable portion of binding is associated with postsynaptic dopamine receptors.  相似文献   
49.
Bilateral lesions of the nucleus locus coeruleus in 7 female stumptail monkeys were followed by long lasting hyperphagia and hyperdipsia. The percentage increase in weight at five weeks after lesioning correlated highly with 3-methoxy-4-hydroxy-phenethylene glycol (MHPG) concentration in the cerebral cortex. This relationship suggests that the effects are due to the locus coeruleus system and are not the result of variable destruction of the ventral noradrenergic or adjacent non-noradrenergic pathways.  相似文献   
50.
Enkephalinases     
Enkephalins can be degraded by a variety of peptidases. We have characterized several membrane-associated brain peptidases in an effort to determine which if any are concerned with the physiological inactivation of synaptically released enkephalin. We have distinguished two carboxyl-directed dipeptidylpeptidases, designated enkephalinase A1 and A2, that give rise to the Tyr-Gly-Gly fragment. Both enzymes are physically separable from angiotensin converting enzyme. Regional variations in enkephalinase A1 activity and opiate receptors are similar. A novel amino-terminal-directed dipeptidylpeptidase, enkephalinase B, which generates Tyr-Gly, has been identified. All of these enzymes as well as aminopeptidase have been solubilized from brain membranes by detergent treatment and have been mutually resolved by DEAE column chromatography. Enkephalinase A1 has been purified 1500-fold, to apparent homogeneity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号