首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   42篇
  145篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2017年   1篇
  2016年   2篇
  2015年   9篇
  2014年   13篇
  2013年   7篇
  2012年   9篇
  2011年   9篇
  2010年   6篇
  2009年   4篇
  2008年   9篇
  2007年   6篇
  2006年   6篇
  2005年   6篇
  2004年   6篇
  2003年   6篇
  2002年   3篇
  2001年   3篇
  2000年   8篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1981年   1篇
  1977年   2篇
  1970年   2篇
排序方式: 共有145条查询结果,搜索用时 15 毫秒
71.
Arterivirus replicase polyproteins are cleaved into at least 13 mature nonstructural proteins (nsps), and in particular the nsp5-to-nsp8 region is subject to a complex processing cascade. The function of the largest subunit from this region, nsp7, which is further cleaved into nsp7α and nsp7β, is unknown. Using nuclear magnetic resonance (NMR) spectroscopy, we determined the solution structure of nsp7α of equine arteritis virus, revealing an interesting unique fold for this protein but thereby providing little clue to its possible functions. Nevertheless, structure-based reverse genetics studies established the importance of nsp7/nsp7α for viral RNA synthesis, thus providing a basis for future studies.  相似文献   
72.
73.
Single-cell measurements and lineage-tracing experiments are revealing that phenotypic cell-to-cell variability is often the result of deterministic processes, despite the existence of intrinsic noise in molecular networks. In most cases, this determinism represents largely uncharacterized molecular regulatory mechanisms, which places the study of cell-to-cell variability in the realm of molecular cell biology. Further research in the field will be important to advance quantitative cell biology because it will provide new insights into the mechanisms by which cells coordinate their intracellular activities in the spatiotemporal context of the multicellular environment.  相似文献   
74.
Methionine oxidation in the ubiquitous calcium signaling protein calmodulin (CaM) is known to disrupt downstream signaling and target CaM for proteasomal degradation. The susceptibility of CaM to oxidation in the different conformations that are sampled during calcium signaling is currently not well defined. Using an integrative mass spectrometry (MS) approach, applying both native MS and LC/MS/MS, we unravel molecular details of CaM methionine oxidation in the context of its interaction with the Ca(2+)/CaM-dependent protein kinase II (CaMKII). Sensitivity to methionine oxidation in CaM was found to vary according to the conformational state. Three methionine residues (Met71, 72, 145) show increased reactivity in calcium-saturated CaM (holo-CaM) compared to calcium-free CaM (apo-CaM), which has important consequences for oxidation-targeted proteasomal degradation. In addition, all four methionines in the C-terminal lobe (Met109, 124, 144 and 145) are found to be protected from oxidation in a peptide-based model of the CaMKII-bound conformation (cbp-CaM). We furthermore demonstrate that the oxidation of Met144 and 145 inhibits the interaction of CaM with CaMKII. cbp-CaM, in contrast to apo- and holo-CaM, maintains its ability to bind CaMKII under simulated conditions of oxidative stress and is also protected from oxidation-induced unfolding. Thus, we show that the susceptibility towards oxidation of specific residues in CaM is tightly linked to its signaling state and conformation, which has direct implications for calcium/CaM-CaMKII related signaling.  相似文献   
75.
76.
The innate immune response constitutes the first line of defense against viral infection and is extensively regulated through ubiquitination. The removal of ubiquitin from innate immunity signaling factors by deubiquitinating enzymes (DUBs) therefore provides a potential opportunity for viruses to evade this host defense system. It was previously found that specific proteases encoded by the unrelated arteri- and nairoviruses resemble the ovarian tumor domain-containing (OTU) family of DUBs. In arteriviruses, this domain has been characterized before as a papain-like protease (PLP2) that is also involved in replicase polyprotein processing. In nairoviruses, the DUB resides in the polymerase protein but is not essential for RNA replication. Using both in vitro and cell-based assays, we now show that PLP2 DUB activity is conserved in all members of the arterivirus family and that both arteri- and nairovirus DUBs inhibit RIG-I-mediated innate immune signaling when overexpressed. The potential relevance of RIG-I-like receptor (RLR) signaling for the innate immune response against arterivirus infection is supported by our finding that in mouse embryonic fibroblasts, the production of beta interferon primarily depends on the recognition of arterivirus RNA by the pattern-recognition receptor MDA5. Interestingly, we also found that both arteri- and nairovirus DUBs inhibit RIG-I ubiquitination upon overexpression, suggesting that both MDA5 and RIG-I have a role in countering infection by arteriviruses. Taken together, our results support the hypothesis that arteri- and nairoviruses employ their deubiquitinating potential to inactivate cellular proteins involved in RLR-mediated innate immune signaling, as exemplified by the deubiquitination of RIG-I.  相似文献   
77.
78.
The polyproteins of coronaviruses are cleaved by viral proteases into at least 15 nonstructural proteins (Nsps). Consisting of five domains, Nsp3 is the largest of these (180–210 kDa). Among these domains, the so‐called X‐domain is believed to act as ADP‐ribose‐1″‐phosphate phosphatase or to bind poly(ADP‐ribose). However, here we show that the X‐domain of Infectious Bronchitis Virus (strain Beaudette), a Group‐3 coronavirus, fails to bind ADP‐ribose. This is explained on the basis of the crystal structure of the protein, determined at two different pH values. For comparison, we also describe the crystal structure of the homologous X‐domain from Human Coronavirus 229E, a Group‐1 coronavirus, which does bind ADP‐ribose.  相似文献   
79.
The objective of this investigation was to determine the relation between baseline glucose, insulin, adiponectin, and leptin levels and subsequent 6‐year weight and waist change in older men and women without diabetes in a prospective cohort study. Participants were 1,198 Dutch men and women without diabetes who were aged 50–77 years when baseline metabolic and anthropometric measurements were evaluated (1989–1991). Approximately 6 years later, body weight and waist circumference were re‐measured at a follow‐up examination (1996–1998). Metabolic variables (fasting plasma glucose, 2‐h postchallenge plasma glucose, homeostasis model assessment of insulin resistance (HOMA‐IR), adiponectin, and leptin) were evaluated as predictors of changes in weight and waist circumference. Postchallenge plasma glucose (mmol/l) significantly predicted less gain in both weight and waist circumference (β = ?0.28 kg, s.e. = 0.11; β = ?0.31 cm, s.e. = 0.14, respectively) during follow‐up. Leptin (µg/l) significantly predicted greater increases in weight (β = 0.29 kg, s.e. = 0.07) and waist (β = 0.16 cm, s.e. = 0.08) among men and in waist among women (β = 0.06 cm, s.e. = 0.02). Fasting plasma glucose (mmol/l) predicted an increase in waist among women (β = 1.59 cm, s.e. = 0.63), but not in men (β = ?0.74 cm, s.e. = 0.55). Adiponectin and insulin did not predict weight or waist change. The authors conclude that lower postchallenge plasma glucose and higher fasting leptin levels significantly predicted long‐term increases in weight and waist circumference. In contrast, measures of insulin resistance and adiponectin were not associated with weight change in this cohort of older persons without diabetes.  相似文献   
80.
The structure of the detergent in crystals of outer membrane phospholipase A (OMPLA) has been determined using neutron diffraction contrast variation. Large crystals were soaked in stabilising solutions, each containing a different H(2)O/D(2)O contrast. From the neutron diffraction at five contrasts, the 12 A resolution structure of the detergent micelle around the protein molecule was determined. The hydrophobic beta-barrel surfaces of the protein molecules are covered by rings of detergent. These detergent belts are fused to neighbouring detergent rings forming a continuous three-dimensional network throughout the crystal. The thickness of the detergent layer around the protein varies from 7-20 A. The enzyme's active site is positioned just outside the hydrophobic detergent zone and is thus in a proper location to catalyse the hydrolysis of phospholipids in a natural membrane. Although the dimerisation face of OMPLA is covered with detergent, the detergent density is weak near the exposed polar patch, suggesting that burying this patch in the enzyme's dimer interface may be energetically favourable. Furthermore, these results indicate a crucial role for detergent coalescence during crystal formation and contribute to the understanding of membrane protein crystallisation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号