首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   9篇
  177篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   10篇
  2015年   7篇
  2014年   5篇
  2013年   5篇
  2012年   14篇
  2011年   11篇
  2010年   11篇
  2009年   4篇
  2008年   16篇
  2007年   11篇
  2006年   13篇
  2005年   12篇
  2004年   10篇
  2003年   11篇
  2002年   10篇
  2001年   1篇
  1999年   1篇
  1998年   4篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1979年   1篇
  1972年   1篇
排序方式: 共有177条查询结果,搜索用时 15 毫秒
111.
Zinc (in the form of Zn2+) is necessary for male fertility. Both Zn2+ quantity and its localisation have been detected in seminal plasma and ejaculated spermatozoa, suggesting its active uptake via zinc import transporters (ZIPs). Immunofluorescence was used to characterise the expression and localisation of three distinct types of ZIP transporters in ejaculated spermatozoa of normo- and asthenozoospermic sperm samples. ZIP6, ZIP10 and ZIP14 showed heterogeneous sperm cell expression and different compartmental distribution. In both types of sperm samples, ZIP6 and ZIP14 were predominantly localised in the sperm head, while ZIP10 was found along the sperm tail. Compartmental localisation of ZIPs in asthenozoospermia was not changed. However, regarding sub-compartmental localisation in sperm head regions, for ZIP6 asthenozoospermia only decreased its acorn/crescent-like pattern. In contrast, ZIP14 immunostaining was altered in favour of crescent-like, as opposed to acorn-like and acorn/crescent-like patterns. The specific ZIPs localisation may reflect their different roles in sperm cell integrity and motility and may change over time. This is the first report of their specific compartmental and sub-compartmental localisation in ejaculated human sperm cells. Further research will lead to a greater understanding of the roles of ZIPs in sperm cell biology, which could positively influence procedures for human infertility therapy.  相似文献   
112.
It has been demonstrated that administration of high concentrations of monosodium glutamate (MSG), induce oxidative stress in different organs, but not in thymus. In the present study we examined the role of oxidative stress in MSG-induced thymocyte apoptosis. MSG was administrated intraperitoneally (4 mg/g of body weight) for six consecutive days. Animals were sacrificed at 1st, 7th, and 15th day after last MSG dose. MSG administration to animals significantly increased apoptotic rate of thymocytes (P < 0.01), together with significant increase of malondialdehyde (MDA) level (P < 0.001) and xanthine oxidase (XO) activity (P < 0.01), in time dependent manner. Catalase activity, during examination period, was significantly decreased (0 < 0.01). Obtained results showed that MSG treatment induced oxidative stress in thymus, which may have an important role in thymocyte apoptosis induced by MSG.  相似文献   
113.
Eleven Lactobacillus strains with strong aggregation abilities were selected from a laboratory collection. In two of the strains, genes associated with aggregation capability were plasmid located and found to strongly correlate with collagen binding. The gene encoding the auto-aggregation-promoting protein (AggLb) of Lactobacillus paracasei subsp. paracasei BGNJ1-64 was cloned using a novel, wide-range-host shuttle cloning vector, pAZILSJ. The clone pALb35, containing a 11377-bp DNA fragment, was selected from the SacI plasmid library for its ability to provide carriers with the aggregation phenotype. The complete fragment was sequenced and four potential ORFs were detected, including the aggLb gene and three surrounding transposase genes. AggLb is the largest known cell-surface protein in lactobacilli, consisting of 2998 aa (318,611 Da). AggLb belongs to the collagen-binding superfamily and its C-terminal region contains 20 successive repeats that are identical even at the nucleotide level. Deletion of aggLb causes a loss of the capacity to form cell aggregates, whereas overexpression increases cellular aggregation, hydrophobicity and collagen-binding potential. PCR screening performed with three sets of primers based on the aggLb gene of BGNJ1-64 enabled detection of the same type of aggLb gene in five of eleven selected aggregation-positive Lactobacillus strains. Heterologous expression of aggLb confirmed the crucial role of the AggLb protein in cell aggregation and specific collagen binding, indicating that AggLb has a useful probiotic function in effective colonization of host tissue and prevention of pathogen colonization.  相似文献   
114.
115.
Neuropilins are involved in angiogenesis and neuronal development. The membrane proximal domain of neuropilin-1, called c or MAM domain based on its sequence conservation, has been implicated in neuropilin oligomerization required for its function. The c/MAM domain of human neuropilin-1 has been recombinantly expressed to allow for investigation of its propensity to engage in molecular interactions with other protein or carbohydrate components on a cell surface. We found that the c/MAM domain was heavily O-glycosylated with up to 24 monosaccharide units in the form of disialylated core 1 and core 2 O-glycans. Attachment sites were identified on the chymotryptic c/MAM peptide ETGATEKPTVIDSTIQSEFPTY by electron-transfer dissociation mass spectrometry (ETD-MS/MS). For highly glycosylated species consisting of carbohydrate to about 50 %, useful results could only be obtained upon partial desialylation. ETD-MS/MS revealed a hierarchical order of the initial O-GalNAc addition to the four different glycosylation sites. These findings enable future functional studies about the contribution of the described glycosylations in neuropilin-1 oligomerization and the binding to partner proteins as VEGF or galectin-1.As a spin-off result the sialidase from Clostridium perfringens turned out to discriminate between galactose- and N-acetylgalactosamine-linked sialic acid.  相似文献   
116.
It is well known that variation in the concentration of estrogens affects insulin action. In this study we examine the impact of estradiol (E2) on insulin signaling in the rat heart. Ovariectomized female rats were treated with E2 6 h prior to analysis of basal protein and mRNA content of insulin signaling molecules, and additionally with insulin 30 min before the experiment to delineate E2 effects on phosphorylations and molecular associations relevant for insulin signaling. The results show that E2 decreased insulin receptor (IR) tyrosine phosphorylation, while it did not alter IR protein and mRNA content. E2 administration did not change IR substrate 1 (IRS‐1) protein content and tyrosine phosphorylation, while decreased mRNA content and increased its association with the p85 subunit of phosphatidylinositol 3‐kinase (PI3K). E2 decreased protein and mRNA content of IR substrate 2 (IRS‐2), while did not change IRS‐2 tyrosine phosphorylation and IRS‐2 association with p85. The increase of IRS‐1/p85 is accompanied by increase of p85 protein and mRNA levels, and by stimulation of protein kinase B (Akt) Ser473 phosphorylation. In contrast, Akt protein and mRNA content were not changed. In summary, although in some aspects cardiac insulin signaling is obviously improved by E2 treatment (increase of p85 mRNA and protein levels, enhancement of IRS‐1/p85 association and Ser473Akt phosphorylation), the observed decrease of IR tyrosine phosphorylation, IRS‐2 protein content, and IRSs mRNA contents, suggest very complex interplay of beneficial and suppressive effects of E2, both genomic and non‐genomic, in regulation of heart insulin signaling. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
117.
118.
Quantitative trait loci for biofortification traits in maize grain   总被引:1,自引:0,他引:1  
Detecting genes that influence biofortification traits in cereal grain could help increase the concentrations of bioavailable mineral elements in crops to solve the global mineral malnutrition problem. The aims of this study were to detect the quantitative trait loci (QTLs) for phosphorus (P), iron (Fe), zinc (Zn), and magnesium (Mg) concentrations in maize grain in a mapping population, as well as QTLs for bioavailable Fe, Zn, and Mg, by precalculating their respective ratios with P. Elemental analysis of grain samples was done by coupled plasma-optical emission spectrometry in 294 F(4) lines of a biparental population taken from field trials of over 3 years. The population was mapped using sets of 121 polymorphic markers. QTL analysis revealed 32 significant QTLs detected for 7 traits, of which some were colocalized. The Additive-dominant model revealed highly significant additive effects, suggesting that biofortification traits in maize are generally controlled by numerous small-effect QTLs. Three QTLs for Fe/P, Zn/P, and Mg/P were colocalized on chromosome 3, coinciding with simple sequence repeats marker bnlg1456, which resides in close proximity to previously identified phytase genes (ZM phys1 and phys2). Thus, we recommend the ratios as bioavailability traits in biofortification research.  相似文献   
119.
The reaction of PdCl2, or K2PdCl4, with diethanolamine (DEA), in the molar ratio 1:2, affords the trans-[PdCl2(DEA)2] complex. X-ray structure analysis of this complex confirmed the formation of the trans-isomer. The complex crystallizes in the space group P42bc. The central Pd(II) ion is coordinated in an almost ideal square-planar fashion with a small deformation of the Cl-Pd-Cl angle (175.6(7) degrees) due to N-H...Cl hydrogen bonding. The N-H group participates in a bifurcated interaction with the two symmetry related Cl- anions. The hydroxyl groups of the diethanolamine ligand form very strong hydrogen bonds between the complex units, thus leading to infinite zigzag (O-H...O-H...O-H..) chains in the crystal packing. The complex units are further connected by weaker intermolecular hydrogen bonds of the N-H...Cl type in a way to form layers parallel to the crystallographic (001) plane. The reaction between the trans-[PdCl2(DEA)2] or trans-[Pd(H2O)2(DEA)2]2+ complex and MeCOHis-Gly dipeptide at 1.5 < pH < 2.0 and at 25 degrees C leads to the regioselective cleavage of the amide bond involving the carboxylic group of the histidine. The cleavage of the substrate was fast and went almost to completion within less than one hour.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号