首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   12篇
  2021年   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   7篇
  2013年   6篇
  2012年   10篇
  2011年   3篇
  2010年   4篇
  2009年   4篇
  2008年   9篇
  2007年   9篇
  2006年   5篇
  2005年   8篇
  2004年   6篇
  2003年   3篇
  2002年   5篇
  2001年   4篇
  2000年   11篇
  1999年   8篇
  1998年   4篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   6篇
  1991年   2篇
  1990年   1篇
  1989年   8篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1984年   4篇
  1982年   4篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   4篇
  1975年   2篇
  1974年   1篇
  1961年   1篇
  1950年   1篇
  1925年   1篇
  1915年   1篇
排序方式: 共有173条查询结果,搜索用时 15 毫秒
71.
72.
Menstrual cycle (MC) alterations occur in some endurance-training women. We hypothesized that a prospective running program would evoke alterations in MC phase lengths and in the physiological frequency of pulses of luteinizing hormone (LH) and/or diminish 24-h integrated serum LH concentrations in some women. In addition, we postulated that women who train more intensively (above the lactate threshold) would show alterations in gonadotropin release earlier in the training program or to a greater degree. To test these hypotheses, we examined the effects of different exercise intensities on physiological and endocrine responses. Twenty-three healthy eumenorrheic gynecologically mature (postmenarchal age 17.8 +/- 0.9 yr) untrained women undertook a 1-yr training program at one of two exercise intensities, one at a velocity corresponding to the lactate threshold (LT) and the other halfway between that of LT and peak running velocity, or served as controls. Training distance was the same in each exercise group. Physiological measurements were repeated every four MC to track changes in fitness and readjust training velocities. The lengths of the MC and the follicular and luteal phases were determined from hormonal concentrations. Body composition, nutritional intake, and pulsatile release of LH were determined. The women ran approximately 790 miles. Each group improved physiologically, with the greater than LT group improving to a greater degree. A less than 2-day decrease in the luteal phase length was observed only in the greater than LT group. No significant changes for any parameter of pulsatile LH release were noted between exercise groups. No significant changes in nutritional intake and only small changes in body composition were noted in either exercise group despite the added energy expenditure of exercise. We conclude that a progressive exercise program of moderate distance and intensity does not adversely affect the robust reproductive system of gynecologically mature eumenorrheic women.  相似文献   
73.
Tooth enamel biomineralization is mediated by enamel proteins synthesized by ameloblast cells. Two classes of proteins have been described: enamelins and amelogenins. In lower vertebrates the absence of amelogenins is believed to give rise to aprismatic enamel; however, rabbit teeth, which apparently do not synthesize amelogenins, form prismatic enamel. The present study was designed to characterize the enamel proteins present in rabbit tooth organs and to gain an insight into the process of biomineralization. Rabbit enamel extracellular-matrix proteins were isolated and characterized during sequential stages of rabbit tooth organogenesis. The biosynthesis of enamel proteins was analysed by metabolic 'pulse-chase' experiments as well as mRNA-translation studies in cell-free systems. Our results indicated that rabbit enamel extracellular matrix contains 'amelogenin-like' proteins. However, these proteins are not synthesized as typical amelogenins, as in other mammalian species, thus suggesting that they are the processing products of higher-molecular-mass precursors. An N-terminal amino acid sequence of 29 residues, considered characteristic of mammalian amelogenins, was present in the rabbit 'amelogenin-like' proteins. By using anti-peptide antibodies to this region, similar epitopes were detected in all nascent enamel proteins, including enamelins. These studies suggest that the N-terminal sequence might be characteristic of all enamel proteins, not only amelogenins.  相似文献   
74.
75.
76.
Acute lung injury (ALI) is characterized by increased endothelial hyperpermeability. Protein nitration is involved in the endothelial barrier dysfunction in LPS-exposed mice. However, the nitrated proteins involved in this process have not been identified. The activation of the small GTPase RhoA is a critical event in the barrier disruption associated with LPS. Thus, in this study we evaluated the possible role of RhoA nitration in this process. Mass spectroscopy identified a single nitration site, located at Tyr34 in RhoA. Tyr34 is located within the switch I region adjacent to the nucleotide-binding site. Utilizing this structure, we developed a peptide designated NipR1 (nitration inhibitory peptide for RhoA 1) to shield Tyr34 against nitration. TAT-fused NipR1 attenuated RhoA nitration and barrier disruption in LPS-challenged human lung microvascular endothelial cells. Further, treatment of mice with NipR1 attenuated vessel leakage and inflammatory cell infiltration and preserved lung function in a mouse model of ALI. Molecular dynamics simulations suggested that the mechanism by which Tyr34 nitration stimulates RhoA activity was through a decrease in GDP binding to the protein caused by a conformational change within a region of Switch I, mimicking the conformational shift observed when RhoA is bound to a guanine nucleotide exchange factor. Stopped flow kinetic analysis was used to confirm this prediction. Thus, we have identified a new mechanism of nitration-mediated RhoA activation involved in LPS-mediated endothelial barrier dysfunction and show the potential utility of “shielding” peptides to prevent RhoA nitration in the management of ALI.  相似文献   
77.
The homologous hexameric AAA+ proteins, Hsp104 from yeast and ClpB from bacteria, collaborate with Hsp70 to dissolve disordered protein aggregates but employ distinct mechanisms of intersubunit collaboration. How Hsp104 and ClpB coordinate polypeptide handover with Hsp70 is not understood. Here, we define conserved distal loop residues between middle domain (MD) helix 1 and 2 that are unexpectedly critical for Hsp104 and ClpB collaboration with Hsp70. Surprisingly, the Hsp104 and ClpB MD distal loop does not contact Hsp70 but makes intrasubunit contacts with nucleotide-binding domain 2 (NBD2). Thus, the MD does not invariably project out into solution as in one structural model of Hsp104 and ClpB hexamers. These intrasubunit contacts as well as those between MD helix 2 and NBD1 are different in Hsp104 and ClpB. NBD2-MD contacts dampen disaggregase activity and must separate for protein disaggregation. We demonstrate that ClpB requires DnaK more stringently than Hsp104 requires Hsp70 for protein disaggregation. Thus, we reveal key differences in how Hsp104 and ClpB coordinate polypeptide handover with Hsp70, which likely reflects differential tuning for yeast and bacterial proteostasis.  相似文献   
78.
79.
Mice with targeted deletion of the GABA-degradative enzyme succinate semialdehyde dehydrogenase (SSADH; Aldh5a1; OMIM 271,980) manifest globally elevated GABA and regionally decreased arginine in brain extracts. We examined the hypothesis that arginine-glycine amidinotransferase catalyzed the formation of guanidinobutyrate (GB) from increased GABA by quantifying guanidinoacetate (GA), guanidinopropionate (GP) and GB in brain extracts employing stable isotope dilution gas chromatographic-mass spectrometry. GA and GB were up to 4- and 22-fold elevated, respectively, in total and regional (cerebellum, hippocampus, cortex) brain extracts derived from SSADH(-/-) mice. Corresponding analyses of urine and cerebrospinal fluid derived from SSADH-deficient patients revealed significant (P<0.05) elevations of GA and GB in urine, as well as GB levels in CSF. These data suggest that GB may be an additional marker of SSADH deficiency, implicate additional pathways of pathophysiology, and identify the second instance of elevated GB in a human inborn error of metabolism.  相似文献   
80.
To create a bioceramic with unique materials properties, biomineralization exploits cells to create a tissue-specific protein matrix to control the crystal habit, timing, and position of the mineral phase. The biomineralized covering of vertebrate teeth is enamel, a distinctive tissue of ectodermal origin that is collagen-free. In forming enamel, amelogenin is the abundant protein that undergoes self-assembly to contribute to a matrix that guides its own replacement by mineral. Conserved domains in amelogenin suggest their importance to biomineralization. We used gene targeting in mice to replace native amelogenin with one of two engineered amelogenins. Replacement changed enamel organization by altering protein-to-crystallite interactions and crystallite stacking while diminishing the ability of the ameloblast to interact with the matrix. These data demonstrate that ameloblasts must continuously interact with the developing matrix to provide amelogenin-specific protein to protein, protein to mineral, and protein to membrane interactions critical to biomineralization and enamel architecture while suggesting that mutations within conserved amelogenin domains could account for enamel variations preserved in the fossil record.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号