首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   960篇
  免费   66篇
  2022年   7篇
  2021年   12篇
  2019年   7篇
  2018年   7篇
  2017年   15篇
  2016年   12篇
  2015年   22篇
  2014年   35篇
  2013年   34篇
  2012年   41篇
  2011年   37篇
  2010年   45篇
  2009年   30篇
  2008年   37篇
  2007年   32篇
  2006年   43篇
  2005年   27篇
  2004年   42篇
  2003年   27篇
  2002年   31篇
  2001年   25篇
  2000年   31篇
  1999年   22篇
  1998年   20篇
  1997年   11篇
  1996年   9篇
  1995年   11篇
  1994年   9篇
  1993年   10篇
  1992年   23篇
  1991年   23篇
  1990年   14篇
  1989年   14篇
  1988年   12篇
  1987年   10篇
  1986年   15篇
  1985年   10篇
  1984年   11篇
  1982年   11篇
  1980年   7篇
  1979年   13篇
  1978年   10篇
  1977年   14篇
  1975年   11篇
  1974年   10篇
  1973年   11篇
  1971年   8篇
  1970年   9篇
  1969年   8篇
  1967年   6篇
排序方式: 共有1026条查询结果,搜索用时 31 毫秒
41.

Background

People with Cystic Fibrosis (CF) in the UK and elsewhere are increasingly surviving into adulthood, yet there is little research on the employment consequences of having CF. We investigated, for the first time in a UK-wide cohort, longitudinal employment status, and its association with deprivation, disease severity, and time in hospital.

Methods

We did a longitudinal registry study of adults with CF in the UK aged 20 to 40 (3458 people with 15,572 observations between 1996 and 2010), using mixed effects models.

Results

Around 50% of adults with CF were in employment. Male sex, higher lung function and body mass index, and less time in hospital were associated with improved employment chances. All other things being equal, being in the most deprived quintile was associated with a reduction of employment prevalence of 17.6 percentage points compared to the prevalence in the least deprived quintile. Having poor lung function was associated with a reduced employment prevalence of 7.2 percentage points compared to the prevalence for people with relatively good lung function. Acting synergistically, deprivation modifies the effect of lung function on employment chances – poor lung function in the least deprived group was associated with a 3 percentage point reduction in employment chances, while poor lung function in the most deprived quintile was associated with a 7.7 point reduction in employment chances.

Conclusions

Greater deprivation, disease severity, and time in hospital are all associated with employment chances in adults with CF. Furthermore, our analysis suggests that deprivation amplifies the harmful association of disease severity on employment. Future studies should focus on understanding and mitigating the barriers to employment faced by people with CF.  相似文献   
42.
43.
The study of the morphological defects unique to interspecific hybrids can reveal which developmental pathways have diverged between species. Drosophila melanogaster and D. santomea diverged more than 10 million years ago, and when crossed produce sterile adult females. Adult hybrid males are absent from all interspecific crosses. We aimed to determine the fate of these hybrid males. To do so, we tracked the development of hybrid females and males using classic genetic markers and techniques. We found that hybrid males die predominantly as embryos with severe segment‐specification defects while a large proportion of hybrid females embryos hatch and survive to adulthood. In particular, we show that most male embryos show a characteristic abdominal ablation phenotype, not observed in either parental species. This suggests that sex‐specific embryonic developmental defects eliminate hybrid males in this interspecific cross. The study of the developmental abnormalities that occur in hybrids can lead to the understanding of cryptic molecular divergence between species sharing a conserved body plan.  相似文献   
44.
Highlights? The mammary epigenome is highly sensitive to steroid hormones at specific developmental stages ? Ezh2 links hormonal cues to changes in chromatin structure and gene expression ? Progesterone is a key in vivo regulator of Ezh2 ? Hormone-induced chromatin changes likely play a role in the initiation of breast cancer  相似文献   
45.
The experiment was organized in a 3×2 factorial arrangement with three dietary fat blends and a basal (20 mg kg?1 diet) or supplemented (220 mg kg?1) level of α-tocopheryl acetate. Dietary vitamin E and monounsaturated to polyunsaturated fatty acid ratio (dietary MUFA/PUFA) affected muscle α-tocopherol concentration (α-tocopherol [log μg g?1]=0.18 (±0.105)+0.0034 (±0.0003)·dietary α-tocopherol [mg kg?1 diet] (P<0.0001)+0.39 (±0.122)·dietary MUFA/PUFA (P<0.0036)). An interaction between dietary α-tocopherol and dietary MUFA/PUFA exists for microsome α-tocopherol concentration (α-tocopherol [log μg g?1]=1.14 (±0.169) (P<0.0001)+0.0056 (±0.00099)·dietary α-tocopherol [mg kg?1 diet] (P<0.0001)+0.54 (±0.206)·dietary MUFA/PUFA (P<0.0131)?0.0033 (±0.0011)·dietary α-tocopherol [mg kg?1)]×dietary MUFA/PUFA (P<0.0067)), and hexanal concentration in meat (hexanal [ng·g?1]=14807.9 (±1489.8)?28.8 (±10.6) dietary α-tocopherol [mg·kg?1] (P<0.01)?8436.6 (±1701.6)·dietary MUFA/PUFA (P<0.001)+24.0 (±11.22)·dietary α-tocopherol·dietary MUFA/PUFA (P<0.0416)). It is concluded that partial substitution of dietary PUFA with MUFA lead to an increase in the concentration of α-tocopherol in muscle and microsome extracts. An interaction between dietary α-tocopherol and fatty acids exists, in which at low level of dietary vitamin E inclusion, a low MUFA/PUFA ratio leads to a reduction in the concentration of α-tocopherol in microsome extracts and a concentration of hexanal in meat above the expected values.  相似文献   
46.
Nicotine is the main tobacco component responsible for tobacco addiction and is used extensively in smoking and smoking cessation therapies. However, little is known about its effects on the immune system. We confirmed that multiple nicotinic receptors are expressed on mouse and human cytotoxic T lymphocytes (CTLs) and demonstrated that nicotinic receptors on mouse CTLs are regulated during activation. Acute nicotine presence during activation increases primary CTL expansion in vitro, but impairs in vivo expansion after transfer and subsequent memory CTL differentiation, which reduces protection against subsequent pathogen challenges. Furthermore, nicotine abolishes the regulatory effect of rapamycin on memory CTL programming, which can be attributed to the fact that rapamycin enhances expression of nicotinic receptors. Interestingly, naïve CTLs from chronic nicotine-treated mice have normal memory programming, which is impaired by nicotine during activation in vitro. In conclusion, simultaneous exposure to nicotine and antigen during CTL activation negatively affects memory development.  相似文献   
47.
Inflammatory bowel disease (IBD) is an immunoregulatory disorder, associated with a chronic and inappropriate mucosal immune response to commensal bacteria, underlying disease states such as ulcerative colitis (UC) and Crohn''s disease (CD) in humans. Granzyme M (GrzM) is a serine protease expressed by cytotoxic lymphocytes, in particular natural killer (NK) cells. Granzymes are thought to be involved in triggering cell death in eukaryotic target cells; however, some evidence supports their role in inflammation. The role of GrzM in the innate immune response to mucosal inflammation has never been examined. Here, we discover that patients with UC, unlike patients with CD, display high levels of GrzM mRNA expression in the inflamed colon. By taking advantage of well-established models of experimental UC, we revealed that GrzM-deficient mice have greater levels of inflammatory indicators during dextran sulfate sodium (DSS)-induced IBD, including increased weight loss, greater colon length reduction and more severe intestinal histopathology. The absence of GrzM expression also had effects on gut permeability, tissue cytokine/chemokine dynamics, and neutrophil infiltration during disease. These findings demonstrate, for the first time, that GrzM has a critical role during early stages of inflammation in UC, and that in its absence colonic inflammation is enhanced.Inflammatory bowel disease (IBD) is a gut-associated inflammatory disorder, which stems from a dysfunctional mucosal immune response to commensal bacteria.1 As a multifactorial disease, IBD is the consequence of a complex interplay between environmental triggers, genetic susceptibility, and immunoregulatory defects, resulting in a pathogenesis that is still poorly understood.2 These interactions result in the inability of an individual to control the normal inflammatory response to pathogens in the gut, leading to a chronic state of sustained and inappropriate inflammation. IBD underlies disease states such as ulcerative colitis (UC) and Crohn''s disease (CD), with symptoms including weight loss, abdominal pain, diarrhea, and rectal bleeding which often require intensive medical therapy and resective surgery.3 The pathogenesis of IBD, characterized by a defective mucosal immune response to microbial exposure in the gastrointestinal tract, is thought to be caused by a dysfunctional immune response to host microbiota, infection by specific pathogens, and/or a defective mucosal barrier to luminal pathogens.1, 2 IBD patients also have a high risk of developing colitis-associated colon cancer (CAC).4 Additionally, histological assessment of inflamed ileal and colonic segments from IBD patients typically shows increased infiltration of immune cells, particularly neutrophils, as well as crypt abscesses, mucin depletion, and ulcers—all correlating with the severity of small bowel and colonic tissue damage.5Cytotoxic pathways mediated by lymphocytes directly trigger cell death in target cells.6 These cytotoxic pathways are mediated by proteins such as perforin, which mediates pore formation in the target cell surface and allows granzyme (Grz)s to enter the intracellular compartment and induce cell death.7 To date, five different Grzs have been identified in humans (GrzA, GrzB, GrzH, GrzK, and GrzM), whereas mice express eleven Grzs (GrzA, GrzB, GrzC, GrzD, GrzE, GrzF, GrzG, GrzK, GrzL, GrzM, and GrzN).8, 9 Walch et al.10 recently demonstrated that Grzs (GrzA and GrzB) directly kill bacteria through granulysin-mediated delivery, suggesting that Grzs act as microbial modulating factors. Moreover, recently GrzA was shown to be increased in the colon biopsies of UC patients undergoing treatment with Etrolizumab, a monoclonal antibody targeting the β7 integrin subunit. Higher levels of GrzA could predict which patients were more likely to benefit from the therapy; however, the precise mechanism of action of GrzA in UC remains to be addressed.11 GrzM was initially described as being constitutively expressed by natural killer (NK) cells,12, 13 and specifically associated with inflammation.14 This enzyme has been shown to preferentially cleave methionine and leucine residues in target cells, mediating direct, non-specific cell death.15, 16 More recently, GrzM was also shown to be an important mediator for the release of MIP-1α from NK cells, inducing NK cell and neutrophil recruitment during early microbial infection.17 We now observe that GrzM expression is increased in inflamed colon tissue samples from UC, but not CD patients. Further, GrzM-deficient (GrzM−/−) mice are more sensitive to a mouse model of IBD and IBD-induced colorectal cancer (CRC). These findings demonstrate, for the first time, that GrzM has a critical role in mediating the early stages of the gut mucosal immune response.  相似文献   
48.
Tumor necrosis factor (TNF) is critical for controlling many intracellular infections, but can also contribute to inflammation. It can promote the destruction of important cell populations and trigger dramatic tissue remodeling following establishment of chronic disease. Therefore, a better understanding of TNF regulation is needed to allow pathogen control without causing or exacerbating disease. IL-10 is an important regulatory cytokine with broad activities, including the suppression of inflammation. IL-10 is produced by different immune cells; however, its regulation and function appears to be cell-specific and context-dependent. Recently, IL-10 produced by Th1 (Tr1) cells was shown to protect host tissues from inflammation induced following infection. Here, we identify a novel pathway of TNF regulation by IL-10 from Tr1 cells during parasitic infection. We report elevated Blimp-1 mRNA levels in CD4+ T cells from visceral leishmaniasis (VL) patients, and demonstrate IL-12 was essential for Blimp-1 expression and Tr1 cell development in experimental VL. Critically, we show Blimp-1-dependent IL-10 production by Tr1 cells prevents tissue damage caused by IFNγ-dependent TNF production. Therefore, we identify Blimp-1-dependent IL-10 produced by Tr1 cells as a key regulator of TNF-mediated pathology and identify Tr1 cells as potential therapeutic tools to control inflammation.  相似文献   
49.
Rhodamines were first produced in the late 19th century, when they constituted a new class of synthetic dyes. These compounds since have been used to color many things including cosmetics, inks, textiles, and in some countries, food products. Certain rhodamine dyes also have been used to stain biological specimens and currently are widely used as fluorescent probes for mitochondria in living cells. The early history and current biological applications are sketched briefly and an account of the ambiguities, complications and confusions concerning dye identification and nomenclature are discussed.  相似文献   
50.
Malachite green was discovered independently by two researchers in Germany in the 19th century and found immediate employment as a dye and a pigment. Subsequently, other uses, such as staining biological specimens, emerged. A much later application was the control of fungal and protozoan infections in fish, for which the dye remains popular, although illegal in many countries owing to a variety of toxicity problems. In solution, malachite green can exist as five different species depending on the pH. The location of the positive charge of the colored cation on a carbon atom or a nitrogen atom is still debated. The original names of this dye, and their origins, are briefly surveyed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号