首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   871篇
  免费   60篇
  2021年   11篇
  2018年   6篇
  2017年   10篇
  2016年   8篇
  2015年   18篇
  2014年   30篇
  2013年   25篇
  2012年   37篇
  2011年   36篇
  2010年   39篇
  2009年   24篇
  2008年   32篇
  2007年   29篇
  2006年   39篇
  2005年   26篇
  2004年   39篇
  2003年   24篇
  2002年   31篇
  2001年   24篇
  2000年   29篇
  1999年   21篇
  1998年   11篇
  1997年   11篇
  1996年   8篇
  1995年   11篇
  1994年   9篇
  1993年   10篇
  1992年   23篇
  1991年   22篇
  1990年   13篇
  1989年   13篇
  1988年   12篇
  1987年   10篇
  1986年   15篇
  1985年   10篇
  1984年   11篇
  1982年   10篇
  1980年   7篇
  1979年   13篇
  1978年   10篇
  1977年   14篇
  1975年   11篇
  1974年   10篇
  1973年   11篇
  1972年   6篇
  1971年   8篇
  1970年   9篇
  1969年   8篇
  1968年   6篇
  1967年   6篇
排序方式: 共有931条查询结果,搜索用时 750 毫秒
61.
Basal keratinocytes of the epidermis adhere to their underlying basement membrane through a specific interaction with laminin-5, which is composed by the association of alpha3, beta3, and gamma2 chains. Laminin-5 has the ability to induce either stable cell adhesion or migration depending on specific processing of different parts of the molecule. One event results in the cleavage of the carboxyl-terminal globular domains 4 and 5 (LG4/5) of the alpha3 chain. In this study, we recombinantly expressed the human alpha3LG4/5 fragment in mammalian cells, and we show that this fragment induces adhesion of normal human keratinocytes and fibrosarcoma-derived HT1080 cells in a heparan- and chondroitin sulfate-dependent manner. Immunoprecipitation experiments with Na2 35SO4-labeled keratinocyte and HT1080 cell lysates as well as immunoblotting experiments revealed that the major proteoglycan receptor for the alpha3LG4/5 fragment is syndecan-1. Syndecan-4 from keratinocytes also bound to alpha3LG4/5. Furthermore we could show for the first time that unprocessed laminin-5 specifically binds syndecan-1, while processed laminin-5 does not. These results demonstrate that the LG4/5 modules within unprocessed laminin-5 permit its cell binding activity through heparan and chondroitin sulfate chains of syndecan-1 and reinforce previous data suggesting specific properties for the precursor molecule.  相似文献   
62.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various tumor cells in vitro, but its physiological role in tumor surveillance remains unknown. Here, we report that TRAIL is constitutively expressed on murine natural killer (NK) cells in the liver and plays a substantial role in suppressing tumor metastasis. Freshly isolated NK cells, but not natural killer T cells or ordinary T cells, from the liver expressed cell surface TRAIL, which was responsible for spontaneous cytotoxicity against TRAIL-sensitive tumor cells in vitro along with perforin and Fas ligand (FasL). Administration of neutralizing monoclonal antibody against TRAIL significantly increased experimental liver metastases of several TRAIL-sensitive tumor cell lines. Such an anti-metastatic effect of TRAIL was not observed in NK cell-depleted mice or interferon-gamma-deficient mice, the latter of which lacked TRAIL on liver NK cells. These findings provide the first evidence for the physiological function of TRAIL as a tumor suppressor.  相似文献   
63.
Functional significance of the perforin/granzyme cell death pathway   总被引:1,自引:0,他引:1  
Perforin/granzyme-induced apoptosis is the main pathway used by cytotoxic lymphocytes to eliminate virus-infected or transformed cells. Studies in gene-disrupted mice indicate that perforin is vital for cytotoxic effector function; it has an indispensable, but undefined, role in granzyme-mediated apoptosis. Despite its vital importance, the molecular and cellular functions of perforin and the basis of perforin and granzyme synergy remain poorly understood. The purpose of this review is to evaluate critically recent findings on cytotoxic granule-mediated cell death and to assess the functional significance of postulated cell-death pathways in appropriate pathophysiological contexts, including virus infection and susceptibility to experimental or spontaneous tumorigenesis.  相似文献   
64.
65.
Perforin (pfp)/Fas ligand (FasL) double-deficient mice have previously been shown to be infertile, lose weight and die prematurely due to tissue destruction caused by a significant inflammatory infiltrate of monocytes/macrophages and T cells. Herein we have compared disease progression in mice additionally deficient in the inflammatory mediator TNF. Unlike pfp/FasL double-deficient mice (TNF+/+ pfp-/- gld), mice lacking functional TNF, FasL and pfp (TNF-/- pfp-/- gld) were comparatively fertile, with the majority of mice not suffering severe pancreatitis or hysterosalphingitis in the first 5 months of life. The mean lifespan of TNF-/- pfp-/- gld mice was 217 +/- 79 days compared with 69 +/- 10 days for TNF+/+ pfp-/- gld mice and the majority of moribund TNF-/- pfp-/- gld mice appeared to die as a result of severe pancreatitis, suggesting that loss of TNF was not completely protective. At 8 weeks of age, characteristics associated with the gld phenotype, such as expansion of B220+ CD4- CD8- T cells, lymphadenopathy and hypergammaglobulinemia were comparable between TNF+/+ pfp-/- gld and TNF-/- pfp-/- gld mice, although the lymphoid organs of TNF+/+ pfp-/- gld mice contained greater numbers of B220+ CD4- CD8- T cells, macrophages and T cells. We conclude that TNF is necessary for the full manifestation of immune dysregulation caused by pfp/FasL-deficiency, in particular in the early and overwhelming tissue infiltration and destruction caused by inflammatory cells.  相似文献   
66.
Multiple types of voltage-activated Ca(2+) channels (T, L, N, P, Q, R type) coordinate Ca(2+)-dependent processes in neurons and neuroendocrine cells. Expressional and functional data have suggested a role for Ca(v)2.3 Ca(2+) channels in endocrine processes. To verify its role in vivo, Ca(v)2.3(-/-) mutant mice were generated, thus deficient in alpha 1E/R-type Ca(2+) channel. Intraperitoneal injection of D-glucose showed that glucose tolerance was markedly reduced, and insulin release into plasma was impaired in Ca(v)2.3-deficient mice. In isolated islets of Langerhans from these animals, no glucose-induced insulin release was detected. Further, in stressed Ca(v)2.3-deficient mice, the rate of glucose release into the blood was only 29% of that observed for wild-type animals. Thus, the deletion of Ca(v)2.3 causes deficits not only in insulin release but also in stress-induced hyperglycemia. The complex phenotype of Ca(v)2.3-deficient mice has dual components related to endocrine and neurological defects. The present findings provide direct evidence of a functional role for the Ca(v)2.3 subunit in hormone secretion and glucose homeostasis.  相似文献   
67.
KN-93, a Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibitor, concentration-dependently and reversibly inhibited inositol 1,4,5-trisphosphate receptor (IP(3)R)-mediated [Ca(2+)](i) signaling in mouse eggs and permeabilized A7r5 smooth muscle cells, two cell types predominantly expressing type-1 IP(3)R (IP(3)R-1). KN-92, an inactive analog, was ineffective. The inhibitory action of KN-93 on Ca(2+) signaling depended neither on effects on IP(3) metabolism nor on the filling grade of Ca(2+) stores, suggesting a direct action on the IP(3)R. Inhibition was independent of CaMKII, since in identical conditions other CaMKII inhibitors (KN-62, peptide 281-309, and autocamtide-related inhibitory peptide) were ineffective and since CaMKII activation was precluded in permeabilized cells. Moreover, KN-93 was most effective in the absence of Ca(2+). Analysis of Ca(2+) release in A7r5 cells at varying [IP(3)], of IP(3)R-1 degradation in eggs, and of [(3)H]IP(3) binding in Sf9 microsomes all indicated that KN-93 did not affect IP(3) binding. Comparison of the inhibition of Ca(2+) release and of [(3)H]IP(3) binding by KN-93 and calmodulin (CaM), either separately or combined, was compatible with a specific interaction of KN-93 with a CaM-binding site on IP(3)R-1. This was also consistent with the much smaller effect of KN-93 in permeabilized 16HBE14o(-) cells that predominantly express type 3 IP(3)R, which lacks the high affinity CaM-binding site. These findings indicate that KN-93 inhibits IP(3)R-1 directly and may therefore be a useful tool in the study of IP(3)R functional regulation.  相似文献   
68.
Microbial decolourisation and degradation of textile dyes   总被引:33,自引:0,他引:33  
Dyes and dyestuffs find use in a wide range of industries but are of primary importance to textile manufacturing. Wastewater from the textile industry can contain a variety of polluting substances including dyes. Increasingly, environmental legislation is being imposed to control the release of dyes, in particular azo-based compounds, into the environment. The ability of microorganisms to decolourise and metabolise dyes has long been known, and the use of bioremediation based technologies for treating textile wastewater has attracted interest. Within this review, we investigate the mechanisms by which diverse categories of microorganisms, such as the white-rot fungi and anaerobic bacterial consortia, bring about the degradation of dyestuffs.  相似文献   
69.
LIM proteins contain one or more double zinc finger structures (LIM domains) mediating specific contacts between proteins that participate in the formation of multiprotein complexes. We report that the LIM-only protein DRAL/FHL2, with four and a half LIM domains, can associate with alpha(3A), alpha(3B), alpha(7A), and several beta integrin subunits as shown in yeast two-hybrid assays as well as after overexpression in human cells. The amino acid sequence immediately following the conserved membrane-proximal region in the integrin alpha subunits or the C-terminal region with the conserved NXXY motif of the integrin beta subunits are critical for binding DRAL/FHL2. Furthermore, the DRAL/FHL2 associates with itself and with other molecules that bind to the cytoplasmic domain of integrin alpha subunits. Deletion analysis of DRAL/FHL2 revealed that particular LIM domains or LIM domain combinations bind the different proteins. These results, together with the fact that full-length DRAL/FHL2 is found in cell adhesion complexes, suggest that it is an adaptor/docking protein involved in integrin signaling pathways.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号