首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   574篇
  免费   58篇
  2022年   5篇
  2021年   11篇
  2020年   4篇
  2019年   4篇
  2018年   4篇
  2017年   7篇
  2016年   10篇
  2015年   23篇
  2014年   34篇
  2013年   36篇
  2012年   56篇
  2011年   48篇
  2010年   19篇
  2009年   18篇
  2008年   27篇
  2007年   24篇
  2006年   36篇
  2005年   26篇
  2004年   19篇
  2003年   21篇
  2002年   26篇
  2001年   21篇
  2000年   20篇
  1999年   13篇
  1998年   7篇
  1997年   7篇
  1996年   12篇
  1995年   5篇
  1994年   7篇
  1993年   7篇
  1992年   6篇
  1991年   2篇
  1990年   8篇
  1989年   4篇
  1988年   9篇
  1987年   4篇
  1986年   10篇
  1985年   5篇
  1984年   7篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
  1978年   4篇
  1977年   2篇
  1974年   2篇
  1973年   1篇
  1968年   2篇
  1967年   1篇
  1966年   1篇
  1955年   1篇
排序方式: 共有632条查询结果,搜索用时 125 毫秒
51.
A primary infection of Salmonella enteritidis causes a spatial-temporal dependent change in the gene expression patterns in the intestine of chickens (Gallus gallus). This is the result of a dynamic intestinal response to adapt to the altered environment and to optimize its ‘health’ and functionality under the new circumstances. By inferring gene association networks (GANs), the complexities of and changes in biological networks can be uncovered. Within such GANs highly interacting (hub) genes can be identified, which are supposed to be high-level regulators connected to multiple processes. By exploring the intestinal expression of genes differing between control and Salmonella infected chicken in a time-dependent manner differences in GANs were found. In control chickens more developmental processes were observed, whereas in infected chickens relatively more processes were associated to ‘defense/pathogen response’. Moreover the conserved protein domains of the identified hub genes in controls were nuclear-associated, whereas hub genes in infected chickens were involved in ‘cellular communication’. The shift in topology and functionality of the intestinal GANs in control and Salmonella infected animals and the identification of GAN-specific hubs is a first step to understand the complexity of biological networks and processes regulating intestinal health and functionality under normal and disturbed conditions.  相似文献   
52.
53.
54.
Smits J  Monden C 《PloS one》2011,6(9):e25239

Background

Until now, little was known about the variation in incidence of twin births across developing countries, because national representative data was lacking. This study provides the first comprehensive overview of national twinning rates across the developing world on the basis of reliable survey data.

Methods

Data on incidence of twinning was extracted from birth histories of women aged 15–49 interviewed in 150 Demographic and Health Surveys, held between 1987 and 2010 in 75 low and middle income countries. During the interview, information on all live births experienced by the women was recorded, including whether it was a singleton or multiple birth. Information was available for 2.47 million births experienced by 1.38 million women in a period of ten years before the interview. Twinning incidence was measured as the number of twin births per thousand births. Data for China were computed on the basis of published figures from the 1990 census. Both natural and age-standardized twinning rates are presented.

Results/Conclusions

The very low natural twinning rates of 6–9 per thousand births previously observed in some East Asian countries turn out to be the dominant pattern in the whole South and South-East Asian region. Very high twinning rates of above 18 per thousand are not restricted to Nigeria (until now seen as the world''s twinning champion) but found in most Central-African countries. Twinning rates in Latin America turn out to be as low as those in Asia. Changes over time are small and not in a specific direction.

Significance

We provide the most complete and comparable overview of twinning rates across the developing world currently possible.  相似文献   
55.
Glioblastoma multiforme (GBM) is the most common and malignant form of glioma with high mortality and no cure. Many human cancers maintain a complex inflammatory program triggering rapid recruitment of inflammatory cells, including mast cells (MCs), to the tumor site. However, the potential contribution of MCs in glioma has not been addressed previously. Here we report for the first time that MCs infiltrate KRas+Akt-induced gliomas, using the RCAS/TV-a system, where KRas and Akt are transduced by RCAS into the brains of neonatal Gtv-a- or Ntv-a transgenic mice lacking Ink4a or Arf. The most abundant MC infiltration was observed in high-grade gliomas of Arf-/- mice. MC accumulation could be localized to the vicinity of glioma-associated vessels but also within the tumor mass. Importantly, proliferating MCs were detected, suggesting that the MC accumulation was caused by local expansion of the MC population. In line with these findings, strong expression of stem cell factor (SCF), i.e. the main MC growth factor, was detected, in particular around tumor blood vessels. Further, glioma cells expressed the MC chemotaxin CXCL12 and MCs expressed the corresponding receptor, i.e. CXCR4, suggesting that MCs could be attracted to the tumor through the CXCL12/CXCR4 axis. Supporting a role for MCs in glioma, strong MC infiltration was detected in human glioma, where GBMs contained significantly higher MC numbers than grade II tumors did. Moreover, human GBMs were positive for CXCL12 and the infiltrating MCs were positive for CXCR4. In conclusion, we provide the first evidence for a role for MCs in glioma.  相似文献   
56.
57.
Intraventricular synchrony of cardiac activation is important for efficient pump function. Ventricular pacing restores the beating frequency but induces more asynchronous depolarization and more inhomogeneous contraction than in the normal heart. We investigated whether the increased inhomogeneity in the left ventricle can be described by a relatively simple mathematical model of cardiac electromechanics, containing normal mechanical and impulse conduction properties. Simulations of a normal heartbeat and of pacing at the right ventricular apex (RVA) were performed. All properties in the two simulations were equal, except for the depolarization sequence. Simulation results of RVA pacing on local depolarization time and systolic midwall circumferential strain were compared with those measured in dogs, using an epicardial sock electrode and MRI tagging, respectively. We used the same methods for data processing for simulation and experiment. Model and experiment agreed in the following aspects. 1) Ventricular pacing decreased systolic pressure and ejection fraction relative to natural sinus rhythm. 2) Shortening during ejection and stroke work declined in early depolarized regions and increased in late depolarized regions. 3) The relation between epicardial depolarization time and systolic midwall circumferential strain was linear and similar for the simulation (slope = -3.80 +/- 0.28 s(-1), R2 = 0.87) and the experiments [slopes for 3 animals -2.62 +/- 0.43 s(-1) (R2 = 0.59), -2.97 +/- 0.38 s(-1) (R2 = 0.69), and -4.44 +/- 0.51 s(-1) (R2 = 0.76)]. We conclude that our model of electromechanics is suitable to simulate ventricular pacing and that the apparently complex events observed during pacing are caused by well-known basic physiological processes.  相似文献   
58.
The monomeric model of rhodopsin-like G protein-coupled receptors (GPCRs) has progressively yielded the floor to the concept of GPCRs being oligo(di)mers, but the functional correlates of dimerization remain unclear. In this report, dimers of glycoprotein hormone receptors were demonstrated in living cells, with a combination of biophysical (bioluminescence resonance energy transfer and homogenous time resolved fluorescence/fluorescence resonance energy transfer), functional and biochemical approaches. Thyrotropin (TSHr) and lutropin (LH/CGr) receptors form homo- and heterodimers, via interactions involving primarily their heptahelical domains. The large hormone-binding ectodomains were dispensable for dimerization but modulated protomer interaction. Dimerization was not affected by agonist binding. Observed functional complementation indicates that TSHr dimers may function as a single functional unit. Finally, heterologous binding-competition studies, performed with heterodimers between TSHr and LH/CG-TSHr chimeras, demonstrated the unsuspected existence of strong negative cooperativity of hormone binding. Tracer desorption experiments indicated an allosteric behavior in TSHr and, to a lesser extent, in LH/CGr and FSHr homodimers. This study is the first report of homodimerization associated with negative cooperativity in rhodopsin-like GPCRs. As such, it may warrant revisitation of allosterism in the whole GPCR family.  相似文献   
59.
60.
The role of stem cells in cardiac regeneration   总被引:18,自引:0,他引:18  
After myocardial infarction, injured cardiomyocytes are replaced by fibrotic tissue promoting the development of heart failure. Cell transplantation has emerged as a potential therapy and stem cells may be an important and powerful cellular source. Embryonic stem cells can differentiate into true cardiomyocytes, making them in principle an unlimited source of transplantable cells for cardiac repair, although immunological and ethical constraints exist. Somatic stem cells are an attractive option to explore for transplantation as they are autologous, but their differentiation potential is more restricted than embryonic stem cells. Currently, the major sources of somatic cells used for basic research and in clinical trials originate from the bone marrow. The differentiation capacity of different populations of bone marrow-derived stem cells into cardiomyocytes has been studied intensively. The results are rather confusing and difficult to compare, since different isolation and identification methods have been used to determine the cell population studied. To date, only mesenchymal stem cells seem to form cardiomyocytes, and only a small percentage of this population will do so in vitro or in vivo. A newly identified cell population isolated from cardiac tissue, called cardiac progenitor cells, holds great potential for cardiac regeneration. Here we discuss the potential of the different cell populations and their usefulness in stem cell based therapy to repair the damaged heart.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号