全文获取类型
收费全文 | 464篇 |
免费 | 14篇 |
专业分类
478篇 |
出版年
2023年 | 2篇 |
2022年 | 7篇 |
2021年 | 8篇 |
2020年 | 6篇 |
2019年 | 8篇 |
2018年 | 7篇 |
2017年 | 10篇 |
2016年 | 17篇 |
2015年 | 28篇 |
2014年 | 13篇 |
2013年 | 36篇 |
2012年 | 47篇 |
2011年 | 47篇 |
2010年 | 22篇 |
2009年 | 31篇 |
2008年 | 28篇 |
2007年 | 36篇 |
2006年 | 30篇 |
2005年 | 18篇 |
2004年 | 22篇 |
2003年 | 14篇 |
2002年 | 17篇 |
2001年 | 1篇 |
2000年 | 4篇 |
1999年 | 3篇 |
1998年 | 3篇 |
1997年 | 1篇 |
1996年 | 2篇 |
1995年 | 3篇 |
1994年 | 1篇 |
1992年 | 1篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1988年 | 2篇 |
1985年 | 1篇 |
排序方式: 共有478条查询结果,搜索用时 15 毫秒
101.
Chehimi J Azzoni L Farabaugh M Creer SA Tomescu C Hancock A Mackiewicz A D'Alessandro L Ghanekar S Foulkes AS Mounzer K Kostman J Montaner LJ 《Journal of immunology (Baltimore, Md. : 1950)》2007,179(4):2642-2650
We analyzed dendritic cell (DC) and NK cell compartments in relation to CD4 recovery in 21 HIV-infected subjects followed to <50 copies/ml once starting antiretroviral therapy (ART) and observed for 52 wk of sustained suppression. Although CD4 counts increased in all subjects in response to ART, we observed a restoration of functional plasmacytoid DC (PDC) after 52 wk of sustained suppression under ART (from 1850 cells/ml to 4550 cells/ml) to levels comparable to controls (5120 cells/ml) only in subjects with a low baseline viral load, which also rapidly suppressed to <50 copies/ml upon 相似文献
102.
103.
Cyclin‐dependent kinase activity enhances phosphatidylcholine biosynthesis in Arabidopsis by repressing phosphatidic acid phosphohydrolase activity 下载免费PDF全文
Christian P. Craddock Nicolette Adams Johan T.M. Kroon Fiona M. Bryant Patrick J. Hussey Smita Kurup Peter J. Eastmond 《The Plant journal : for cell and molecular biology》2017,89(1):3-14
Coordination of endomembrane biogenesis with cell cycle progression is considered to be important in maintaining cell function during growth and development. We previously showed that the disruption of PHOSPHATIDIC ACID PHOSPHOHYDROLASE (PAH) activity in Arabidopsis thaliana stimulates biosynthesis of the major phospholipid phosphatidylcholine (PC) and causes expansion of the endoplasmic reticulum. Here we show that PC biosynthesis is repressed by disruption of the core cell cycle regulator CYCLIN‐DEPENDENT KINASE A;1 (CDKA;1) and that this repression is reliant on PAH. Furthermore, we show that cyclin‐dependent kinases (CDKs) phosphorylate PAH1 at serine 162, which reduces both its activity and membrane association. Expression of a CDK‐insensitive version of PAH1 with a serine 162 to alanine substitution represses PC biosynthesis and also reduces the rate of cell division in early leaf development. Together our findings reveal a physiologically important mechanism that couples the rate of phospholipid biosynthesis and endomembrane biogenesis to cell cycle progression in Arabidopsis. 相似文献
104.
The nonstructural NS3 protein of the hepatitis C virus is a multifunctional enzyme with an N-terminal serine protease activity and a C-terminal helicase activity. The helicase is capable of unwinding both DNA and RNA duplexes; however, the overall processivity of the helicase is fairly low. We show here that single-strand binding (SSB) proteins enhance the unwinding processivity of both the NS3 helicase domain (NS3h) and the full-length protease-helicase NS3-4A. The detailed study of the effect of SSB on the DNA unwinding activity of NS3h indicates that the SSB stabilizes the helicase at the unwinding junction and prevents its dissociation. These results suggest a potential role for either cellular or virus-encoded SSB protein in improving the processivity of the NS3 in vivo. 相似文献
105.
Inamul Haque Archana De Monami Majumder Smita Mehta Douglas McGregor Sushanta K. Banerjee Peter Van Veldhuizen Snigdha Banerjee 《The Journal of biological chemistry》2012,287(46):38569-38579
CCN1 is a matricellular protein and a member of the CCN family of growth factors. CCN1 is associated with the development of various cancers including pancreatic ductal adenocarcinoma (PDAC). Our recent studies found that CCN1 plays a critical role in pancreatic carcinogenesis through the induction of EMT and stemness. CCN1 mRNA and protein were detected in the early precursor lesions, and their expression intensified with disease progression. However, biochemical activity and the molecular targets of CCN1 in pancreatic cancer cells are unknown. Here we show that CCN1 regulates the Sonic Hedgehog (SHh) signaling pathway, which is associated with the PDAC progression and poor prognosis. SHh regulation by CCN1 in pancreatic cancer cells is mediated through the active Notch-1. Notably, active Notch-1is recruited by CCN1 in these cells via the inhibition of proteasomal degradation results in stabilization of the receptor. We find that CCN1-induced activation of SHh signaling might be necessary for CCN1-dependent in vitro pancreatic cancer cell migration and tumorigenicity of the side population of pancreatic cancer cells (cancer stem cells) in a xenograft in nude mice. Moreover, the functional role of CCN1 could be mediated through the interaction with the αvβ3 integrin receptor. These extensive studies propose that targeting CCN1 can provide a new treatment option for patients with pancreatic cancer since blocking CCN1 simultaneously blocks two critical pathways (i.e. SHh and Notch1) associated with the development of the disease as well as drug resistance. 相似文献
106.
Pharmacological agents were used to investigate the possible involvement of actin in signalling chains associated with abscisic acid (ABA)-induced ion release from the guard cell vacuole, a process which is absolutely essential for stomatal closure. Effects on the ABA-induced transient stimulation of tonoplast efflux were measured, using (86)Rb in isolated guard cells of Commelina communis, together with effects on stomatal apertures. In the response to 10 microm ABA (triggered by Ca(2+) influx rather than internal Ca(2+) release), jasplakinolide (stabilizing actin filaments) and latrunculin B (depolymerizing actin filaments) had opposite effects. Both closure and the vacuolar efflux transient were inhibited by jasplakinolide but enhanced by latrunculin B. At 10 microm ABA prevention of mitogen-activated protein (MAP) kinase activation by PD98059 partially inhibited closure and reduced the efflux transient. By contrast, latrunculin B inhibited the efflux transient at 0.1 microm ABA (involving internal Ca(2+) release rather than Ca(2+) influx). The results suggest that 10 microm ABA activates Ca(2+)-dependent vacuolar ion efflux via a Ca(2+)-permeable influx channel which is maintained closed by interaction with F-actin. A MAP kinase is also involved, in a chain similar to that postulated for Ca(2+)-dependent gene expression in cold acclimation. 相似文献
107.
Plant cell cultivations are being considered as an alternative to agricultural processes for producing valuable phytochemicals. Since many of these products (secondary metabolites) are obtained by direct extraction from plants grown in natural habitat, several factors can alter their yield. The use of plant cell cultures has overcome several inconveniences for the production of these secondary metabolites. Organized cultures, and especially root cultures, can make a significant contribution in the production of secondary metabolites. Most of the research efforts that use differentiated cultures instead of cell suspension cultures have focused on transformed (hairy) roots. Agrobacterium rhizogenes causes hairy root disease in plants. The neoplastic (cancerous) roots produced by A. rhizogenes infection are characterized by high growth rate, genetic stability and growth in hormone free media. These genetically transformed root cultures can produce levels of secondary metabolites comparable to that of intact plants. Hairy root cultures offer promise for high production and productivity of valuable secondary metabolites (used as pharmaceuticals, pigments and flavors) in many plants. The main constraint for commercial exploitation of hairy root cultivations is the development and scaling up of appropriate reactor vessels (bioreactors) that permit the growth of interconnected tissues normally unevenly distributed throughout the vessel. Emphasis has focused on designing appropriate bioreactors suitable to culture the delicate and sensitive plant hairy roots. Recent reactors used for mass production of hairy roots can roughly be divided as liquid-phase, gas-phase, or hybrid reactors. The present review highlights the nature, applications, perspectives and scale up of hairy root cultures for the production of valuable secondary metabolites. 相似文献
108.
Katie M. Branscum Smita K. Menon Clay A. Foster Ann H. West 《Protein science : a publication of the Protein Society》2019,28(12):2099-2111
Two‐component signaling systems are the primary means by which bacteria, archaea, and certain plants and fungi react to their environments. The model yeast, Saccharomyces cerevisiae, uses the Sln1 signaling pathway to respond to hyperosmotic stress. This pathway contains a hybrid histidine kinase (Sln1) that autophosphorylates and transfers a phosphoryl group to its own receiver domain (R1). The phosphoryl group is then transferred to a histidine phosphotransfer protein (Ypd1) that finally passes it to the receiver domain (R2) of a downstream response regulator (Ssk1). Under normal conditions, Ssk1 is constitutively and preferentially phosphorylated in the phosphorelay. Upon detecting hyperosmotic stress, Ssk1 rapidly dephosphorylates and activates the high‐osmolarity glycerol (HOG) pathway, initiating a response. Despite their distinct physiological roles, both Sln1 and Ssk1 bind to Ypd1 at a common docking site. Co‐crystal structures of response regulators in complex with their phosphorelay partners are scarce, leaving many mechanistic and structural details uncharacterized for systems like the Sln1 pathway. In this work, we present the co‐crystal structure of Ypd1 and a near wild‐type variant of the receiver domain of Ssk1 (Ssk1‐R2‐W638A) at a resolution of 2.80 Å. Our structural analyses of Ypd1‐receiver domain complexes, biochemical determination of binding affinities for Ssk1‐R2 variants, in silico free energy estimates, and sequence comparisons reveal distinctive electrostatic properties of the Ypd1/Ssk1‐R2‐W638A complex that may provide insight into the regulation of the Sln1 pathway as a function of dynamic osmolyte concentration. 相似文献
109.
Host-to-host transmission in most Salmonella serovars occurs primarily via the fecal-oral route. Salmonella enterica serovar Typhi is a human host-adapted pathogen and some S. Typhi patients become asymptomatic carriers. These individuals excrete large numbers of the bacteria in their feces and transmit the pathogen by contaminating water or food sources. The carrier state has also been described in livestock animals and is responsible for food-borne epidemics. Identification and treatment of carriers are crucial for the control of disease outbreaks. In this review, we describe recent advances in molecular profiling of human carriers and the use of animal models to identify potential host and bacterial genes involved in the establishment of the carrier state. 相似文献
110.
The role of glia maturation factor (GMF) in myelin oligodendrocyte glycoprotein (MOG) 35-55 peptide-induced experimental autoimmune encephalomyelitis (EAE) was investigated using GMF-deficient (GMF-KO) mice. We demonstrate that GMF-KO mice were resistant to the MOG 35-55 peptide-induced EAE as compared to wild type (Wt) mice (two in eight versus 10 in 10). Next, we examined the effect of administration of recombinant human GMF (rGMF) on MOG 35-55 peptide-induced EAE in mice. Daily administration of rGMF, staring days 1-14, resulted in significant exacerbation of clinical symptoms. Following rGMF injections, both GMF-KO (six in eight) and Wt mice (eight in eight) developed severe EAE (maximal clinical score of 3.5-4.0) with high frequency. The histological examination revealed severe infiltration of inflammatory cells in the spinal cord of MOG-immunized Wt mice while the resistance to EAE in GMF-KO mice was characterized by the absence of inflammatory cells. Administration of rGMF in Wt mice and GMF-KO mice resulted in a significant increase in infiltrating cells in the spinal cord following MOG-immunizations. We also evaluated cytokines and chemokines production as parameters of severity of inflammation in the spinal cord of Wt versus GMF-KO mice with and without GMF-reconstitution following MOG-immunizations. Cytokines (TNF-α, IFN-γ, IL-1β, IL-6) and chemokines (CCL2, CCL3, CXCL10, GM-CSF) production were significantly greater in Wt mice than in GMF-KO mice following MOG-immunization. Furthermore, the reconstitution experiment with rGMF showed that the administration of rGMF in both, Wt mice and GMF-KO mice produced significant increase in the GMF-mediated cytokine/chemokine production. 相似文献