首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   502篇
  免费   18篇
  2024年   1篇
  2023年   2篇
  2022年   6篇
  2021年   8篇
  2020年   7篇
  2019年   11篇
  2018年   7篇
  2017年   10篇
  2016年   18篇
  2015年   29篇
  2014年   14篇
  2013年   41篇
  2012年   52篇
  2011年   54篇
  2010年   26篇
  2009年   34篇
  2008年   30篇
  2007年   39篇
  2006年   31篇
  2005年   20篇
  2004年   23篇
  2003年   16篇
  2002年   18篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1973年   1篇
  1971年   1篇
排序方式: 共有520条查询结果,搜索用时 31 毫秒
51.
The expression of intracellular antibodies (intrabodies) in eukaryotic cells has provided a powerful tool to manipulate microbial and cellular signaling pathways in a highly precise manner. However, there have been several technical issues that have restricted their more widespread use. In particular, single-chain antibodies (sFv) have been reported to fold poorly in the reducing environment of the cytoplasm and as such there has been a reluctance to use sFv-phage libraries as a source of intrabodies unless a pre-selection step to identify these rare sFvs from natural libraries or libraries of engineering sFvs that could fold properly in the absence of disulfide bonds were used. Here, we investigated whether target specific sFvs that are isolated from a 15 billion member non-immune human sFv-phage display library could be directly screened in pools as intrabodies without prior knowledge of their individual identity or purity within pools of antigen-specific sFvs. As the target, we used a synthetic transformation effector site 1 (TES1) polypeptide comprising the membrane-most proximal 34 amino acid residues of the carboxy-terminal cytoplasmic tail of the oncogenic latent membrane protein 1 (LMP1) of Epstein Barr virus, which serves as a docking site for adapter proteins of the tumor necrosis factor (TNF) receptor (TNFR)-associated factor (TRAF) family. Anti-TES1 sFvs, initially identified by phage ELISA screens, were grouped into pools according to the absorbance reading of the antigen-specific phage ELISA assays and then transferred as pools into eukaryotic expression vectors and expressed as cytoplasmic intrabodies. Using the pooling strategy, there was no loss of individual anti-TES1 sFvs in the transfer from prokaryotic to eukaryotic expression vectors. In addition, the initial assignments into sFv pools based on phage ELISA readings allowed the segregation of individual anti-TES1 sFvs into discrete or minimally overlapping intrabody pools. Further assessment of the biological activity of the anti-TES1 intrabody pools demonstrated that they were all able to selectively block F-LMP1-induced NFkappaB activity that was mediated through the TES1-site and to bind LMP1 protein with high efficiency. This direct phage to intrabody screening (DPIS) strategy should allow investigators to bypass much of the in vitro sFv characterization that is often not predictive of in vivo intrabody function and provide a more efficient use of large native and synthetic sFv phage libraries already in existence to identify intrabodies that are active in vivo.  相似文献   
52.
53.
54.
Nickel is considered a weak carcinogen. It is known to interact with DNA and DNA-binding proteins. The ability of certain nickel compounds to cleave DNA has been exploited mainly for research purposes and less for developing new anticancer drugs. Here we compare the interactions of two closely related nickel complexes, [NiCR]2+ and [Ni(CR-2H)]2+, with DNA. CR stands for 2,12-dimethyl-3,7,11,17-tetraazabicyclo-[11.3.1]-heptadeca-1(17),2,11,13,15-pentaene. [NiCR]2+ has been used in the past as a structure-specific probe for RNA and DNA oligonucleotides in the presence of oxidizing agent but little is known about the biological effects of either complex. Our results show that [Ni(CR-2H)]2+ can damage DNA in vivo and in vitro in the absence of an added oxidizing agent and has an IC50 of 70 microM in human breast cancer cells whereas [NiCR]2+ and NiCl2 do not exhibit significant cytotoxicity. However, both [NiCR]2+ and [Ni(CR-2H)]2+ bind to the minor groove of double-stranded DNA.  相似文献   
55.
Tang GQ  Patel SS 《Biochemistry》2006,45(15):4947-4956
To form a functional open complex, bacteriophage T7 RNA polymerase (RNAP) binds to its promoter DNA and induces DNA bending and opening. The objective of this study was to elucidate the temporal coupling in DNA binding, bending, and opening processes that occur during initiation. For this purpose, we conducted a combined measurement of stopped-flow fluorescence anisotropy, fluorescence resonance energy transfer (FRET), and 2-aminopurine fluorescence. Stopped-flow anisotropy measurements provided direct evidence of an intermediate resulting from rapid binding of the promoter to T7 RNA polymerase. Stopped-flow FRET measurements showed that promoter bending occurred at a rate constant that was slower than the initial DNA binding rate constant, indicating that the initial complex was not significantly bent. Similarly, stopped-flow 2-aminopurine fluorescence changes showed that promoter opening occurred at a rate constant that was slower than the initial DNA binding rate constant, indicating that the initial complex was not significantly melted. The indistinguishable observed rate constants of FRET and 2-aminopurine fluorescence changes indicate that DNA bending and opening processes are temporally coupled and these DNA conformational changes take place after the DNA binding step. The results in this paper are consistent with the mechanism in which the initial binding of T7 RNAP to the promoter results in a closed complex, which is then converted into an open complex in which the promoter is both sharply bent and melted.  相似文献   
56.
57.
Long-lasting siRNA-based down-regulation of gene of interest can be achieved by lentiviral-based expression vectors driving the production of short hairpin RNA (shRNA). We investigated an attractive therapeutic approach to target the expression of proinflammatory GMF by using lentiviral vector encoding GMF-specific shRNA to reduce GMF levels in the spinal cord and brain of mice. To determine the effect of GMF-shRNA on GMF protein levels, we performed quantitative ELISA analysis in brain and in thoracic, cervical and lumbar regions of spinal cord from mice followed by GMF-shRNA (G-shRNA) or control shRNA (C-shRNA) treatments. Our results show a marked reduction of GMF protein levels in brain and spinal cord of mice treated with GMF-shRNA compared to control shRNA treatment. Consistent with the GMF protein analysis, the immunohistochemical examination of the spinal cord sections of EAE mice treated with GMF-shRNA showed significantly reduced GMF-immunoreactivity. Thus, the down-regulation of GMF by GMF-shRNA was efficient and wide spread in CNS as evident by the significantly reduced levels of GMF protein in the brain and spinal cord of mice.  相似文献   
58.
MEN1, which encodes the nuclear protein menin, acts as a tumor suppressor in lung cancer and is often inactivated in human primary lung adenocarcinoma. Here, we show that the inactivation of MEN1 is associated with increased DNA methylation at the MEN1 promoter by K-Ras. On one hand, the activated K-Ras up-regulates the expression of DNA methyltransferases and enhances the binding of DNA methyltransferase 1 to the MEN1 promoter, leading to increased DNA methylation at the MEN1 gene in lung cancer cells; on the other hand, menin reduces the level of active Ras-GTP at least partly by preventing GRB2 and SOS1 from binding to Ras, without affecting the expression of GRB2 and SOS1. In human lung adenocarcinoma samples, we further demonstrate that reduced menin expression is associated with the enhanced expression of Ras (p < 0.05). Finally, excision of the Men1 gene markedly accelerates the K-RasG12D-induced tumor formation in the Men1f/f;K-RasG12D/+;Cre ER mouse model. Together, these findings uncover a previously unknown link between activated K-Ras and menin, an important interplay governing tumor activation and suppression in the development of lung cancer.  相似文献   
59.
Nutrition is a critical but poorly understood determinant of immunity. There is abundant epidemiological evidence linking protein malnutrition to impaired vaccine efficacy and increased susceptibility to infections; yet, the role of dietary protein in immune memory homeostasis remains poorly understood. In this study, we show that protein-energy malnutrition induced in mice by low-protein (LP) feeding has a detrimental impact on CD8 memory. Relative to adequate protein (AP)-fed controls, LP feeding in lymphocytic choriomeningitis virus (LCMV)-immune mice resulted in a 2-fold decrease in LCMV-specific CD8 memory T cells. Adoptive transfer of memory cells, labeled with a division tracking dye, from AP mice into naive LP or AP mice demonstrated that protein-energy malnutrition caused profound defects in homeostatic proliferation. Remarkably, this defect occurred despite the lymphopenic environment in LP hosts. Whereas Ag-specific memory cells in LP and AP hosts were phenotypically similar, memory cells in LP hosts were markedly less responsive to polyinosinic-polycytidylic acid-induced acute proliferative signals. Furthermore, upon recall, memory cells in LP hosts displayed reduced proliferation and protection from challenge with LCMV-clone 13, resulting in impaired viral clearance in the liver. The findings show a metabolic requirement of dietary protein in sustaining functional CD8 memory and suggest that interventions to optimize dietary protein intake may improve vaccine efficacy in malnourished individuals.  相似文献   
60.
We report here the transmission of human prions to 18 new transgenic (Tg) mouse lines expressing 8 unique chimeric human/mouse prion proteins (PrP). Extracts from brains of two patients, who died of sporadic Creutzfeldt-Jakob disease (sCJD), contained either sCJD(MM1) or sCJD(VV2) prion strains and were used for inocula. Mice expressing chimeric PrP showed a direct correlation between expression level and incubation period for sCJD(MM1) prions irrespective of whether the transgene encoded methionine (M) or valine (V) at polymorphic residue 129. Tg mice expressing chimeric transgenes encoding V129 were unexpectedly resistant to infection with sCJD(VV2) prions, and when transmission did occur, it was accompanied by a change in strain type. The transmission of sCJD(MM1) prions was modulated by single amino acid reversions of each human PrP residue in the chimeric sequence. Reverting human residue 137 in the chimeric transgene from I to M prolonged the incubation time for sCJD(MM1) prions by more than 100 days; structural analyses suggest a profound change in the orientation of amino acid side chains with the I→M mutation. These findings argue that changing the surface charge in this region of PrP greatly altered the interaction between PrP isoforms during prion replication. Our studies contend that strain-specified replication of prions is modulated by PrP sequence-specific interactions between the prion precursor PrP(C) and the infectious product PrP(Sc).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号