首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   502篇
  免费   18篇
  2024年   1篇
  2023年   2篇
  2022年   6篇
  2021年   8篇
  2020年   7篇
  2019年   11篇
  2018年   7篇
  2017年   10篇
  2016年   18篇
  2015年   29篇
  2014年   14篇
  2013年   41篇
  2012年   52篇
  2011年   54篇
  2010年   26篇
  2009年   34篇
  2008年   30篇
  2007年   39篇
  2006年   31篇
  2005年   20篇
  2004年   23篇
  2003年   16篇
  2002年   18篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1973年   1篇
  1971年   1篇
排序方式: 共有520条查询结果,搜索用时 15 毫秒
11.
TTLL5/STAMP (tubulin tyrosine ligase-like family member 5) has multiple activities in cells. TTLL5 is one of 13 TTLLs, has polyglutamylation activity, augments the activity of p160 coactivators (SRC-1 and TIF2) in glucocorticoid receptor-regulated gene induction and repression, and displays steroid-independent growth activity with several cell types. To examine TTLL5/STAMP functions in whole animals, mice were prepared with an internal deletion that eliminated several activities of the Stamp gene. This mutation causes both reduced levels of STAMP mRNA and C-terminal truncation of STAMP protein. Homozygous targeted mutant (Stamptm/tm) mice appear normal except for marked decreases in male fertility associated with defects in progressive sperm motility. Abnormal axonemal structures with loss of tubulin doublets occur in most Stamptm/tm sperm tails in conjunction with substantial reduction in α-tubulin polyglutamylation, which closely correlates with the reduction in mutant STAMP mRNA. The axonemes in other structures appear unaffected. There is no obvious change in the organs for sperm development of WT versus Stamptm/tm males despite the levels of WT STAMP mRNA in testes being 20-fold higher than in any other organ examined. This defect in male fertility is unrelated to other Ttll genes or 24 genes previously identified as important for sperm function. Thus, STAMP appears to participate in a unique, tissue-selective TTLL-mediated pathway for α-tubulin polyglutamylation that is required for sperm maturation and motility and may be relevant for male fertility.  相似文献   
12.
Ebola, a fatal virus in humans and non-human primates, has no Food and Drug Administration-approved vaccines or therapeutics. The virus from the Filoviridae family causes hemorrhagic fever, which rapidly progresses and in some cases has a fatality rate near 90%. The Ebola genome encodes seven genes, the most abundantly expressed of which is viral protein 40 (VP40), the major Ebola matrix protein that regulates assembly and egress of the virus. It is well established that VP40 assembles on the inner leaflet of the plasma membrane; however, the mechanistic details of plasma membrane association by VP40 are not well understood. In this study, we used an array of biophysical experiments and cellular assays along with mutagenesis of VP40 to investigate the role of membrane penetration in VP40 assembly and egress. Here we demonstrate that VP40 is able to penetrate specifically into the plasma membrane through an interface enriched in hydrophobic residues in its C-terminal domain. Mutagenesis of this hydrophobic region consisting of Leu213, Ile293, Leu295, and Val298 demonstrated that membrane penetration is critical to plasma membrane localization, VP40 oligomerization, and viral particle egress. Taken together, VP40 membrane penetration is an important step in the plasma membrane localization of the matrix protein where oligomerization and budding are defective in the absence of key hydrophobic interactions with the membrane.  相似文献   
13.
The formation of human islet amyloid polypeptide (hIAPP) is implicated in the loss of pancreatic β-cells in type II diabetes. Rat amylin, which differs from human amylin at six residues, does not lead to formation of amyloid fibrils. Pramlintide is a synthetic analog of human amylin that shares three proline substitutions with rat amylin. Pramlintide has a much smaller propensity to form amyloid aggregates and has been widely prescribed in amylin replacement treatment. It is known that the three prolines attenuate β-sheet formation. However, the detailed effects of these proline substitutions on full-length hIAPP remain poorly understood. In this work, we use molecular simulations and bias-exchange metadynamics to investigate the effect of proline substitutions on the conformation of the hIAPP monomer. Our results demonstrate that hIAPP can adopt various β-sheet conformations, some of which have been reported in experiments. The proline substitutions perturb the formation of long β-sheets and reduce their stability. More importantly, we find that all three proline substitutions of pramlintide are required to inhibit β conformations and stabilize the α-helical conformation. Fewer substitutions do not have a significant inhibiting effect.  相似文献   
14.
15.
16.
A 90 mer ssDNA aptamer (P38) enriched against Plasmodium falciparum lactate dehydrogenase (PfLDH) through SELEX process was immobilized over glassy carbon electrode (GCE) using graphene oxide (GO) as an immobilization matrix, and the modified electrode was investigated for detection of PfLDH. The GO was synthesized from powdered pencil graphite and characterized by XRD based on the increased interlayer distance between graphitic layers from 0.345 nm for graphite to 0.829 nm for GO. The immobilization of P38 on GO was confirmed by ID/IG intensity ratio in Raman spectra where, the ratio were 0.67, 0.915, and 1.35 for graphite, GO and P38-GO, respectively. The formation of the P38 layer over GO-GCE was evident from an increase in the surface height in AFM analysis of the electrode from ∼3.5 nm for GO-GCE to ∼27 nm for P38-GO-GCE. The developed aptasensor when challenged with the target, a detection of as low as 0.5 fM of PfLDH was demonstrated. The specificity of the aptasensor was confirmed through a voltametric measurement at 0.65 V of the reduced co-factor generated from the PfLDH catalysis. Studies on interference from some common proteins, storage stability, repeatability and analysis of real samples demonstrated the practical application potential of the aptasensor.  相似文献   
17.
The 26S proteasome is a multi‐catalytic ATP‐dependent protease complex that recognizes and cleaves damaged or misfolded proteins to maintain cellular homeostasis. The 26S subunit consists of 20S core and 19S regulatory particles. 20S core particle consists of a stack of heptameric alpha and beta subunits. To elucidate the structure‐function relationship, we have dissected protein‐protein interfaces of 20S core particle and analyzed structural and physiochemical properties of intra‐alpha, intra‐beta, inter‐beta, and alpha‐beta interfaces. Furthermore, we have studied the evolutionary conservation of 20S core particle. We find the size of intra‐alpha interfaces is significantly larger and is more hydrophobic compared with other interfaces. Inter‐beta interfaces are well packed, more polar, and have higher salt‐bridge density than other interfaces. In proteasome assembly, residues in beta subunits are better conserved than alpha subunits, while multi‐interface residues are the most conserved. Among all the residues at the interfaces of both alpha and beta subunits, Gly is highly conserved. The largest size of intra‐alpha interfaces complies with the hypothesis that large interfaces form first during the 20S assembly. The tight packing of inter‐beta interfaces makes the core particle impenetrable from outer wall of the cylinder. Comparing the three domains, eukaryotes have large and well‐packed interfaces followed by archaea and bacteria. Our findings provide a structural basis of assembly of 20S core particle in all the three domains of life.  相似文献   
18.
Spermiogenesis, known as spermateleosis in lower vertebrates, is the transformation of the round spermatid into a highly specialized spermatozoon with a species-specific structure. Spermateleosis and sperm morphology of two species of caecilians, Ichthyophis tricolor and Uraeotyphlus cf. narayani, from the Western Ghats of Kerala, India, were studied using light and transmission electron microscopy. Spermateleosis is described in early, mid-, and late phases. During the early phase, the spermatid nucleus does not elongate, but the acrosome vesicle is Golgi-derived and its material is produced as a homogeneous substance rather than as discrete granules. In development of the acrosome, the centrioles shift in position to the lower half of the cell. The acrosomal vesicles take the full shape of the acrosome with the establishment of the perforatorium in midphase. An endonuclear canal develops and accommodates the perforatorium. The incipient flagellum is laid down when the proximal centriole attaches to the posterior side of the nucleus and the distal centriole connects to the proximal centriole, which forms the basal granule of the acrosome. The axial fiber also appears during midphase. The mitochondria shift in position to the posterior pole of the cell to commence establishment of the midphase. Late phase is characterized by nuclear condensation and elongation. Consequently, the final organization of the sperm is established with the head containing the nucleus and the acrosome. The undulating membrane separates the axoneme and axial fiber. Most of the cytoplasm is lost as residual bodies.  相似文献   
19.
20.
This study reports the anatomy, histology, and ultrastructure of the male Mullerian gland of the caecilian Uraeotyphlus narayani, based on dissections, light microscopic histological and histochemical preparations, and transmission electron microscopic observations. The posterior end of the Mullerian duct and the urinogenital duct of this caecilian join to form a common duct before opening into the cloaca. The boundary of the entire gland has a pleuroperitoneum, followed by smooth muscle fibers and connective tissue. The Mullerian gland is composed of numerous individual tubular glands separated from each other by connective tissue. Each gland has a duct, which joins the central Mullerian duct. The ducts of the tubular glands are also surrounded by abundant connective tissue. The tubular glands differ between the column and the base in regard to the outer boundary and the epithelial organization. The basement membrane of the column is so thick that amoeboid cells may not penetrate it, whereas that around the base of the gland is thin and appears to allow migration of amoeboid cells into and out of the basal aspect of the gland. The epithelium of the column has nonciliated secretory cells with basal nuclei and ciliated nonsecretory cells with apical nuclei. In the epithelium of the base there are secretory cells, ciliated cells, and amoeboid cells. The epithelium of ducts of the tubular glands is formed of ciliated dark cells and microvillated light cells. The epithelium of the central duct is formed of ciliated dark cells also possessing microvilli, ciliated light cells also possessing microvilli, and microvillated light cells that lack cilia. It is regressed during March to June when the testis lobes are in a state of quiescence. The Mullerian gland is active in secretion during July to February when the testis is active in spermatogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号