首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1037篇
  免费   52篇
  2023年   5篇
  2022年   17篇
  2021年   19篇
  2020年   17篇
  2019年   18篇
  2018年   22篇
  2017年   19篇
  2016年   37篇
  2015年   48篇
  2014年   55篇
  2013年   64篇
  2012年   81篇
  2011年   74篇
  2010年   49篇
  2009年   53篇
  2008年   52篇
  2007年   59篇
  2006年   49篇
  2005年   34篇
  2004年   50篇
  2003年   41篇
  2002年   32篇
  2001年   15篇
  2000年   20篇
  1999年   16篇
  1998年   7篇
  1997年   3篇
  1996年   6篇
  1995年   9篇
  1994年   5篇
  1993年   11篇
  1992年   8篇
  1991年   9篇
  1990年   7篇
  1989年   10篇
  1988年   6篇
  1987年   5篇
  1986年   7篇
  1985年   9篇
  1984年   3篇
  1983年   6篇
  1982年   3篇
  1981年   2篇
  1979年   3篇
  1977年   2篇
  1976年   4篇
  1974年   2篇
  1973年   5篇
  1972年   2篇
  1970年   2篇
排序方式: 共有1089条查询结果,搜索用时 31 毫秒
91.
Bone marrow-derived mesenchymal stem cells (BMDMSCs) appear to be important in repair of the chronic lung injury caused by bleomycin in mice. To determine effects of these BMDMSCs on an acute inflammatory response, we injected C57BL/6 mice intraperitoneally with 1 mg/kg endotoxin followed either by intravenous infusion of 5 x 10(5) BMDMSCs, the same number of lung fibroblasts, or an equal volume of normal saline solution. Lungs harvested 6, 24, and 48 h and 14 days after endotoxin showed that BMDMSC administration prevented endotoxin-induced lung inflammation, injury, and edema. Although we were able to detect donor cells in the lungs at 1 day after endotoxin, by 14 days no donor cells were detected. BMDMSC administration suppressed the endotoxin-induced increase in circulating proinflammatory cytokines without decreasing circulating levels of anti-inflammatory mediators. Ex vivo cocultures of BMDMSC and lung cells from endotoxemic animals demonstrated a bilateral conversation in which lung cells stimulated proliferation and migration of stem cells and suppressed proinflammatory cytokine production by lung cells. We conclude that BMDMSCs decrease both the systemic and local inflammatory responses induced by endotoxin. These effects do not require either lung engraftment or differentiation of the stem cells and are due at least in part to the production of stem cell chemoattractants by the lungs and to humoral and physical interactions between stem cells and lung cells. We speculate that mobilization of this population of BMDMSCs may be a general mechanism for modulating an acute inflammatory response.  相似文献   
92.
Live non-opsonized and opsonized Aeromonas hydrophila were injected into juveniles of freshwater prawn Macrobrachium rosenbergii to study the cells involved in phagocytosis, distribution of bacteria, cellular reactions and clearance of both forms of bacteria from the system. The bacteria were rapidly distributed to various tissues viz., gills, heart, hepatopancreas within 1h, and the tissues revealed haemocytic nodule formation after 3 h of injection. There was rapid clearance of both the forms of bacteria from the circulation. However, clearance efficiency was significantly (P < 0.05) faster in the case of opsonized bacteria at 12 h after injection. Similarly, the nodule formation, that was prominent in cardiac musculature, was rapidly eliminated from the tissues of the group injected with opsonized bacteria as compared to non-opsonized bacteria injected group, thus confirming the existence of opsonic factors in haemolymph of this prawn. In another experiment, various dose levels of bacteria were injected intramuscularly into prawns and haemolymph was collected after 1, 6, 24, 72 h and 7 days of injection to study various immune parameters. Although, no major alterations in the total and differential haemocyte counts were observed in bacteria injected prawns compared to control, there was a significant decline in phenoloxidase activity in the highest dose bacteria injected group at the earlier phase and a rise in agglutinin levels at the later phase of the experimental period in the higher dose groups.  相似文献   
93.
Glia maturation factor (GMF), a highly conserved brain-specific protein, isolated, sequenced and cloned in our laboratory. Overexpression of GMF in astrocytes induces the production and secretion of granulocyte-macrophage-colony stimulating factor (GM-CSF), and subsequent immune activation of microglia, expression of several proinflammatory genes including major histocompatibility complex proteins, IL-1β, and MIP-1β, all associated with the development of experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. Based on GMF’s ability to activate microglia and induce well-established proinflammatory mediators, including GM-CSF, we hypothesize that GMF is involved in the pathogenesis of inflammatory disease EAE. In this present investigation, using GMF-deficient mice, we study the role of GMF and how the lack of GMF affects the EAE disease. Our results show a significant decrease in incidence, delay in onset, and reduced severity of EAE in GMF-deficient mice, and support the hypothesis that GMF plays a major role in the pathogenesis of disease.  相似文献   
94.
Mitbavkar S  Anil AC 《Biofouling》2007,23(1-2):99-112
Diatoms constitute an important component of the fouling community. Although a lot of work has dealt with the fouling diatom community structure, work on the species interactions within the community is still meagre. In this regard, a study was carried out by transferring natural diatom biofilms into controlled conditions in order to understand the roles of nutrients, initial cell inoculum and seasonal variation in species composition in structuring the fouling diatom community. This community exhibited seasonal variation during the monsoon, post-monsoon and pre-monsoon periods. During each of these seasons, diatom species interactions varied depending upon the species composition. It was observed that excess nutrients favoured those species with comparatively higher growth rates, thereby suppressing the growth of other co-existing species. This competitive trait was found to be effective at an appropriate cell density ratio of the competitive and target species. Understanding such pathways will be useful for modelling the interactions between diatom species in various habitats under different resource conditions.  相似文献   
95.
Biogeochemistry - Soil carbon cycling and ecosystem functioning can strongly depend on how microbial communities regulate their metabolism and adapt to changing environmental conditions to improve...  相似文献   
96.
97.
The impact of histone deacetylases (HDACs) in the control of gonadotropin releasing hormone (GnRH) neuronal development is unknown. We identified an increase in many HDACs in GT1-7 (differentiated) compared with NLT (undifferentiated) GnRH neuronal cell lines. Increased HDAC9 mRNA and protein and specific deacetylase activity in GT1-7 cells suggested a functional role. Introduction of HDAC9 in NLT cells protected from serum withdrawal induced apoptosis and impaired basal neuronal cell movement. Conversely, silencing of endogenous HDAC9 in GT1-7 cells increased apoptosis and cell movement. Comparison of WT and mutant HDAC9 constructs demonstrated that the HDAC9 pro-survival effects required combined cytoplasmic and nuclear localization, whereas the effects on cell movement required a cytoplasmic site of action. Co-immunoprecipitation demonstrated a novel interaction of HDAC9 selectively with the Class IIb HDAC6. HDAC6 was also up-regulated at the mRNA and protein levels, and HDAC6 catalytic activity was significantly increased in GT1-7 compared with NLT cells. HDAC9 interacted with HDAC6 through its second catalytic domain. Silencing of HDAC6, HDAC9, or both, in GT1-7 cells augmented apoptosis compared with controls. HDAC6 and -9 had additive effects to promote cell survival via modulating the BAX/BCL2 pathway. Silencing of HDAC6 resulted in an activation of movement of GT1-7 cells with induction in acetylation of α-tubulin. Inhibition of HDAC6 and HDAC9 together resulted in an additive effect to increase cell movement but did not alter the acetylation of αtubulin. Together, these studies identify a novel interaction of Class IIa HDAC9 with Class IIb HDAC6 to modulate cell movement and survival in GnRH neurons.  相似文献   
98.
Regulation of membrane lipid biosynthesis is critical for cell function. We previously reported that disruption of PHOSPHATIDIC ACID PHOSPHOHYDROLASE1 (PAH1) and PAH2 stimulates net phosphatidylcholine (PC) biosynthesis and proliferation of the endoplasmic reticulum (ER) in Arabidopsis thaliana. Here, we show that this response is caused specifically by a reduction in the catalytic activity of the protein and positively correlates with an accumulation of its substrate, phosphatidic acid (PA). The accumulation of PC in pah1 pah2 is suppressed by disruption of CTP:PHOSPHOCHOLINE CYTIDYLYLTRANSFERASE1 (CCT1), which encodes a key enzyme in the nucleotide pathway for PC biosynthesis. The activity of recombinant CCT1 is stimulated by lipid vesicles containing PA. Truncation of CCT1, to remove the predicted C-terminal amphipathic lipid binding domain, produced a constitutively active enzyme. Overexpression of native CCT1 in Arabidopsis has no significant effect on PC biosynthesis or ER morphology, but overexpression of the truncated constitutively active version largely replicates the pah1 pah2 phenotype. Our data establish that membrane homeostasis is regulated by lipid composition in Arabidopsis and reveal a mechanism through which the abundance of PA, mediated by PAH activity, modulates CCT activity to govern PC content.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号