首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1037篇
  免费   52篇
  2023年   5篇
  2022年   17篇
  2021年   19篇
  2020年   17篇
  2019年   18篇
  2018年   22篇
  2017年   19篇
  2016年   37篇
  2015年   48篇
  2014年   55篇
  2013年   64篇
  2012年   81篇
  2011年   74篇
  2010年   49篇
  2009年   53篇
  2008年   52篇
  2007年   59篇
  2006年   49篇
  2005年   34篇
  2004年   50篇
  2003年   41篇
  2002年   32篇
  2001年   15篇
  2000年   20篇
  1999年   16篇
  1998年   7篇
  1997年   3篇
  1996年   6篇
  1995年   9篇
  1994年   5篇
  1993年   11篇
  1992年   8篇
  1991年   9篇
  1990年   7篇
  1989年   10篇
  1988年   6篇
  1987年   5篇
  1986年   7篇
  1985年   9篇
  1984年   3篇
  1983年   6篇
  1982年   3篇
  1981年   2篇
  1979年   3篇
  1977年   2篇
  1976年   4篇
  1974年   2篇
  1973年   5篇
  1972年   2篇
  1970年   2篇
排序方式: 共有1089条查询结果,搜索用时 312 毫秒
61.
DNA damage induced in NC37 lymphoblasts by optical tweezers with a continuous-wave Ti:sapphire laser and a continuous-wave Nd:YAG laser (60-240 mW; 10-50 TJ/m2; 30-120 s irradiation) was studied with the comet assay, a single-cell technique used to detect DNA fragmentation in genomes. Over the wavelength range of 750-1064 nm, the amount of damage in DNA peaks at around 760 nm, with the fraction of DNA damage within the range of 750-780 nm being a factor of two larger than the fraction of DNA damage within the range of 800-1064 nm. The variation in DNA damage was not significant over the range of 800-1064 nm. When the logarithm of damage thresholds measured in the present work, as well as values reported previously in the UV range, was plotted as a function of wavelength, a dramatic wavelength dependence became apparent. The damage threshold values can be fitted on two straight lines, one for continuous-wave sources and the other for pulsed sources, irrespective of the type of source used (e.g. classical lamp or laser). The damage threshold around 760 nm falls on the line extrapolated from values for UV-radiation-induced damage, while the data for 800-1064 nm fall on a line that has a different slope. The change in the slope between 320 and 340 nm observed earlier is consistent with a well-known change in DNA-damaging mechanisms. The change observed around 780 nm is therefore suggestive of a further change in the mechanism(s). The data from this work together with our previous measurements provide, to the best of our knowledge, the most comprehensive view available of the DNA damage produced by microfocused light.  相似文献   
62.
DNA helicases are molecular motors that use the energy from NTP hydrolysis to drive the process of duplex DNA strand separation. Here, we measure the translocation and energy coupling efficiency of a replicative DNA helicase from bacteriophage T7 that is a member of a class of helicases that assembles into ring-shaped hexamers. Presteady state kinetics of DNA-stimulated dTTP hydrolysis activity of T7 helicase were measured using a real time assay as a function of ssDNA length, which provided evidence for unidirectional translocation of T7 helicase along ssDNA. Global fitting of the kinetic data provided an average translocation rate of 132 bases per second per hexamer at 18 degrees C. While translocating along ssDNA, T7 helicase hydrolyzes dTTP at a rate of 49 dTTP per second per hexamer, which indicates that the energy from hydrolysis of one dTTP drives unidirectional movement of T7 helicase along two to three bases of ssDNA. One of the features that distinguishes this ring helicase is its processivity, which was determined to be 0.99996, which indicated that T7 helicase travels on an average about 75kb of ssDNA before dissociating. We propose that the ability of T7 helicase to translocate unidirectionally along ssDNA in an efficient manner plays a crucial role in DNA unwinding.  相似文献   
63.
Embryo dormancy in flowering plants is an important dispersal mechanism that promotes survival of the seed through time. The subsequent transition to germination is a critical control point regulating initiation of vegetative growth. Here we show that the Arabidopsis COMATOSE (CTS) locus is required for this transition, and acts, at least in part, by profoundly affecting the metabolism of stored lipids. CTS encodes a peroxisomal protein of the ATP binding cassette (ABC) transporter class with significant identity to the human X-linked adrenoleukodystrophy protein (ALDP). Like X-ALD patients, cts mutant embryos and seedlings exhibit pleiotropic phenotypes associated with perturbation in fatty acid metabolism. CTS expression transiently increases shortly after imbibition during germination, but not in imbibed dormant seeds, and genetic analyses show that CTS is negatively regulated by loci that promote embryo dormancy through multiple independent pathways. Our results demonstrate that CTS regulates transport of acyl CoAs into the peroxisome, and indicate that regulation of CTS function is a major control point for the switch between the opposing developmental programmes of dormancy and germination.  相似文献   
64.
A pulsed (17 nanoseconds) Nd:YAG laser (1064 nm) was used to inject impermeable dyes (propidium iodide andiodide and merocyanine 540) and a plasmid (pEGFP-N1) encoding green fluorescent protein (GFP) into human breast adenocarcinoma cells (MCF-7). The cell membrane integrity and viability were fully preserved in this laser-assisted transfer.  相似文献   
65.
Controlled, continuous rotation of cells or intracellular objects was achieved using optical tweezers with an elliptic beam profile (line tweezers), which was generated by placing a cylindrical lens in the path of the trapping beam. By rotating the cylindrical lens, rotation of the elliptic trapping beam and hence of the object trapped therein was achieved. Compared to previously reported techniques for rotation of microscopic objects, this approach is much simpler, gives better utilization of available laser power and also allows much easier control of the trap beam profile. We have used this approach for rotation of biological objects varying in size from 2 to 40 m. At 25 mW trapping beam power at the object plane E. coli bacteria could be rotated at speeds approaching 10 Hz and an intracellular object (presumably a calcium oxalate crystal) trapped inside Elodea densa plant cell could be rotated with speeds of up to 4 Hz. To our knowledge, this is the first report for rotation of an intracellular object.  相似文献   
66.
Structure and function of chloroplasts are known to after during senescence. The senescence-induced specific changes in light harvesting antenna of photosystem II (PSII) and photosystem I (PSI) were investigated in Cucumis cotyledons. Purified light harvesting complex II (LHCII) and photosystem I complex were isolated from 6-day non-senescing and 27-day senescing Cucumis cotyledons. The chlorophyll a/b ratio of LHCII obtained from 6-day-old control cotyledons and their absorption, chlorophyll a fluorescence emission and the circular dichroism (CD) spectral properties were comparable to the LHCII preparations from other plants such as pea and spinach. The purified LHCII obtained from 27-day senescing cotyledons had a Chl a/b ratio of 1.25 instead of 1.2 as with 6-day LHCII and also exhibited significant changes in the visible CD spectrum compared to that of 6-day LHCII, indicating some specific alterations in the organisation of chlorophylls of LHCII. The light harvesting antenna of photosystems are likely to be altered due to aging. The room temperature absorption spectrum of LHCII obtained from 27-day senescing cotyledons showed changes in the peak positions. Similarly, comparison of 77K chlorophyll a fluorescence emission characteristics of LHCII preparation from senescing cotyledons with that of control showed a small shift in the peak position and the alteration in the emission profile, which is suggestive of possible changes in energy transfer within LHCII chlorophylls. Further, the salt induced aggregation of LHCII samples was lower, resulting in lower yields of LHCII from 27-day cotyledons than from normal cotyledons. Moreover, the PSI preparations of 6-day cotyledons showed Chl a/b ratios of 5 to 5.5, where as the PSI sample of 27-day cotyledons had a Chl a/b ratio of 2.9 suggesting LHCII association with PSI. The absorption, fluorescence emission and visible CD spectral measurements as well as the polypeptide profiles of 27-day cotyledon-PSI complexes indicated age-induced association of LHCII of PSII with PSI obtained from 27-day cotyledons. We modified our isolation protocols by increasing the duration of detergent Triton X-100 treatment for preparing the PSI and LHCII complexes from 27-day cotyledons. However, the PSI complexes isolated from senescing samples invariably proved to have significantly low Chl a/b ratio suggesting an age induced lateral movement and possible association of LHCII with PSI complexes. The analyses of polypeptide compositions of LHCII and PSI holocomplexes isolated from 6-day control and 27-day senescing cotyledons showed distinctive differences in their profiles. The presence of 26-28 kDa polypeptide in PSI complexes from 27-day cotyledons, but not in 6-day control PSI complexes is in agreement with the notion that senescence induced migration of LHCII to stroma lamellae and its possible association with PSI. We suggest that the migration of LHCII to the stroma lamellae region and its possible association with PSI might cause the destacking and flattening of grana structure during senescence of the chloroplasts. Such structural changes in light harvesting antenna are likely to alter energy transfer between two photosystems. The nature of aging induced migration and association of LHCII with PSI and its existence in other senescing systems need to be estimated in the future.  相似文献   
67.
We report the formation and appearance of loosely stacked extended grana like structures along with plastoglobuli in the chloroplasts isolated from 27-day old senescing cucumber cotyledons. The origin and the nature of these extended grana structures have not been elucidated earlier. We isolated Photosystem I complexes from 6-day-old control and 27-day-old senescing cotyledons. The chlorophyll a/b ratio of the isolated Photosystem I complex obtained from 6-day cotyledons was 5–5.5 as against a ratio of 2.9 was found in Photosystem I complexes obtained from 27-day-old senescing cotyledons. We also found that the presence of LHC II in the Photosystem I complexes isolated from 27-day cotyledonary chloroplasts. The presence of LHC II in Photosystem I complexes in senescing and not in control samples, clearly suggest the detachment and diffusion of LHC II complexes from stacked grana region to Photosystem I enriched stroma lamellar region thereby, forming loose disorganized extended grana structures seen in the transmission electron microscope. Furthermore, we show that under in vitro condition the senescing cotyledon chloroplasts exhibited lower extent of light induced phosphorylation of LHC II than the control samples suggesting a possible irreversible phosphorylation and diffusion of LHC II in vivo during the progress of senescence in Cucumis cotyledons. From these findings, we suggest that the senescence induced phosphorylation of LHC II and its migration towards Photosystem I may be a programmed one some how causing the destruction of the thylakoid membrane. The released membrane components may be stored in the plastoglobuli prior to their mobilization to the younger plant parts. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
68.
Acardiac anomaly spectrum   总被引:1,自引:0,他引:1  
BACKGROUND: Acardiac anomaly spectrum is a rare congenital malformation found in monozygotic twin pregnancy. Besides the absence of heart, the condition is associated with variable grades of developmental disruption. Thus, no two cases are similar. METHODS: This case report is based on physical examination and autopsy findings. RESULTS: The twin had acardia and partial development of head and face. There was complete absence of upper extremities. CONCLUSIONS: The twin reversed arterial perfusion (TRAP) theory is the most accepted etiology of the disorder. Normally, the cephalic pole is the most severely affected, being most distal to the retrograde perfusion. In acardia, partial development of head, face, and brain is usually associated with the development of the upper extremities. However, in the present case, there was extensive cephalic development in the absence of upper extremity development.  相似文献   
69.
70.
Carbonic anhydrase I (CAI) is one out of ten CA isoenzymes that have been identified in humans. X-ray crystallographic and inhibitor complex studies of human carbonic anhydrase I (HCAI) and related studies in other CA isoenzymes identified several residues, in particular Thr199, GlulO6, Tyr7, Glull7, His l07, with likely involvement in the catalytic activity of HCAI. To further study the role of these residues, we undertook, site-directed mutagenesis of HCAI. Using a polymerase chain reaction based strategy and altered oligonucleotide primers, we modified a cloned wild type hCAI gene so as to produce mutant genes encoding proteins with single amino acid substitutions. Thrl99Val, Thrl99Cys, Thr199Ser, GlulO6Ile, Glul06Gln, Tyr7Trp, Glu.117Gln, and His 107Val mutations were thus generated and the activity of each measured by ester hydrolysis. Overproduction of the Glu117Gln and HisI07Val mutant proteins inEscherichia coli resulted in a large proportion of the enzyme forming aggregates probably due to folding defect. The mutations Thr199Val, GlulO6Ile and GlulO6Gln gave soluble protein with drastically reduced enzyme activity, while the Tyr7Trp mutation had only marginal effect on the activity, thus s.uggesting important roles for Thr199 and Glu lO6 but not for Tyr7 in the catalytic function of HCAI.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号