首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1037篇
  免费   52篇
  2023年   5篇
  2022年   17篇
  2021年   19篇
  2020年   17篇
  2019年   18篇
  2018年   22篇
  2017年   19篇
  2016年   37篇
  2015年   48篇
  2014年   55篇
  2013年   64篇
  2012年   81篇
  2011年   74篇
  2010年   49篇
  2009年   53篇
  2008年   52篇
  2007年   59篇
  2006年   49篇
  2005年   34篇
  2004年   50篇
  2003年   41篇
  2002年   32篇
  2001年   15篇
  2000年   20篇
  1999年   16篇
  1998年   7篇
  1997年   3篇
  1996年   6篇
  1995年   9篇
  1994年   5篇
  1993年   11篇
  1992年   8篇
  1991年   9篇
  1990年   7篇
  1989年   10篇
  1988年   6篇
  1987年   5篇
  1986年   7篇
  1985年   9篇
  1984年   3篇
  1983年   6篇
  1982年   3篇
  1981年   2篇
  1979年   3篇
  1977年   2篇
  1976年   4篇
  1974年   2篇
  1973年   5篇
  1972年   2篇
  1970年   2篇
排序方式: 共有1089条查询结果,搜索用时 343 毫秒
31.
Abstract

Fusarium induced-stress-protein (FISP) of ~51 kDa molecular mass was detected in seven day old germinated wheat (Triticum aestivum var Sonalika) seedlings infected with F. oxysporum for a period of seven days. This particular stress protein (FISP) of ~51 kDa was over-expressed in the case of Fusarium infected seedlings compared to the untreated seedlings where the presence of this protein was insignificant. Localisation of this ~51 kDa protein in root tissue by anti-CSAP (Cadmium Stress Associated Protein) antiserum showed a significantly higher number of gold particles in the case of Fusarium infected root tissue compared to the untreated control. A unique type of organised localisation of FISP around the plasma membrane and outer vacuolar membrane suggests its defensive role against Fusarium infection that might be a general stress protein against biotic and abiotic stresses.  相似文献   
32.
We previously demonstrated that glia maturation factor (GMF), a brain specific protein, isolated, sequenced and cloned in our laboratory, induce expression of proinflammatory cytokines and chemokines in the central nervous system. We also reported that the up-regulation of GMF in astrocytes leads to the destruction of neurons suggesting a novel pathway of GMF-mediated cytotoxicity of brain cells, and implicated its involvement in the pathogenesis of inflammatory neurodegenerative diseases. In the present study, we examined the expressions of GMF in triple-transgenic Alzheimer’s disease (3xTg-AD) mice. Our results show a 13-fold up-regulation of GMF and 8–12-fold up-regulation of proinflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), IL-1β, interferon gamma (IFN-γ), and chemokine (C–C motif) ligand 2 (CCL2) and C–X–C motif chemokine 10 (CXCL10/IP-10) mRNA as determined by quantitative real-time RT-PCR in the brain of 3xTg-AD mice as compared to non-transgenic (Non-Tg) mice. In conclusion, the increase in GMF and cytokine/chemokine expression was correlated with reactive glial fibrillary acidic protein positive astrocytes and ionized calcium binding adaptor molecule 1 (Iba-1)-positive microglia in 3xTg-AD mice.  相似文献   
33.
Polyadenylation plays important roles in RNA metabolism in both prokaryotes and eukaryotes. Surprisingly, deregulation of polyadenylation by poly(A) polymerase I (PAP I) in Escherichia coli leads to toxicity and cell death. We show here that mature tRNAs, which are normally not substrates for PAP I in wild-type cells, are rapidly polyadenylated as PAP I levels increase, leading to dramatic reductions in the fraction of aminoacylated tRNAs, cessation of protein synthesis and cell death. The toxicity associated with PAP I is exacerbated by the absence of either RNase T and/or RNase PH, the two major 3′ → 5′ exonucleases involved in the final step of tRNA 3′-end maturation, confirming their role in the regulation of tRNA polyadenylation. Furthermore, our data demonstrate that regulation of PAP I is critical not for preventing the decay of mRNAs, but rather for maintaining normal levels of functional tRNAs and protein synthesis in E. coli, a function for polyadenylation that has not been observed previously in any organism.  相似文献   
34.
The molecular architecture of protein-RNA interfaces are analyzed using a non-redundant dataset of 152 protein-RNA complexes. We find that an average protein-RNA interface is smaller than an average protein-DNA interface but larger than an average protein–protein interface. Among the different classes of protein-RNA complexes, interfaces with tRNA are the largest, while the interfaces with the single-stranded RNA are the smallest. Significantly, RNA contributes more to the interface area than its partner protein. Moreover, unlike protein–protein interfaces where the side chain contributes less to the interface area compared to the main chain, the main chain and side chain contributions flipped in protein-RNA interfaces. We find that the protein surface in contact with the RNA in protein-RNA complexes is better packed than that in contact with the DNA in protein-DNA complexes, but loosely packed than that in contact with the protein in protein–protein complexes. Shape complementarity and electrostatic potential are the two major factors that determine the specificity of the protein-RNA interaction. We find that the H-bond density at the protein-RNA interfaces is similar with that of protein-DNA interfaces but higher than the protein–protein interfaces. Unlike protein-DNA interfaces where the deoxyribose has little role in intermolecular H-bonds, due to the presence of an oxygen atom at the 2′ position, the ribose in RNA plays significant role in protein-RNA H-bonds. We find that besides H-bonds, salt bridges and stacking interactions also play significant role in stabilizing protein-nucleic acids interfaces; however, their contribution at the protein–protein interfaces is insignificant.  相似文献   
35.
Kinetic analysis of the DNA unwinding and translocation activities of helicases is necessary for characterization of the biochemical mechanism(s) for this class of enzymes. Saccharomyces cerevisiae Pif1 helicase was characterized using presteady state kinetics to determine rates of DNA unwinding, displacement of streptavidin from biotinylated DNA, translocation on single-stranded DNA (ssDNA), and ATP hydrolysis activities. Unwinding of substrates containing varying duplex lengths was fit globally to a model for stepwise unwinding and resulted in an unwinding rate of ∼75 bp/s and a kinetic step size of 1 base pair. Pif1 is capable of displacing streptavidin from biotinylated oligonucleotides with a linear increase in the rates as the length of the oligonucleotides increased. The rate of translocation on ssDNA was determined by measuring dissociation from varying lengths of ssDNA and is essentially the same as the rate of unwinding of dsDNA, making Pif1 an active helicase. The ATPase activity of Pif1 on ssDNA was determined using fluorescently labeled phosphate-binding protein to measure the rate of phosphate release. The quantity of phosphate released corresponds to a chemical efficiency of 0.84 ATP/nucleotides translocated. Hence, when all of the kinetic data are considered, Pif1 appears to move along DNA in single nucleotide or base pair steps, powered by hydrolysis of 1 molecule of ATP.  相似文献   
36.
TTLL5/STAMP (tubulin tyrosine ligase-like family member 5) has multiple activities in cells. TTLL5 is one of 13 TTLLs, has polyglutamylation activity, augments the activity of p160 coactivators (SRC-1 and TIF2) in glucocorticoid receptor-regulated gene induction and repression, and displays steroid-independent growth activity with several cell types. To examine TTLL5/STAMP functions in whole animals, mice were prepared with an internal deletion that eliminated several activities of the Stamp gene. This mutation causes both reduced levels of STAMP mRNA and C-terminal truncation of STAMP protein. Homozygous targeted mutant (Stamptm/tm) mice appear normal except for marked decreases in male fertility associated with defects in progressive sperm motility. Abnormal axonemal structures with loss of tubulin doublets occur in most Stamptm/tm sperm tails in conjunction with substantial reduction in α-tubulin polyglutamylation, which closely correlates with the reduction in mutant STAMP mRNA. The axonemes in other structures appear unaffected. There is no obvious change in the organs for sperm development of WT versus Stamptm/tm males despite the levels of WT STAMP mRNA in testes being 20-fold higher than in any other organ examined. This defect in male fertility is unrelated to other Ttll genes or 24 genes previously identified as important for sperm function. Thus, STAMP appears to participate in a unique, tissue-selective TTLL-mediated pathway for α-tubulin polyglutamylation that is required for sperm maturation and motility and may be relevant for male fertility.  相似文献   
37.
Ebola, a fatal virus in humans and non-human primates, has no Food and Drug Administration-approved vaccines or therapeutics. The virus from the Filoviridae family causes hemorrhagic fever, which rapidly progresses and in some cases has a fatality rate near 90%. The Ebola genome encodes seven genes, the most abundantly expressed of which is viral protein 40 (VP40), the major Ebola matrix protein that regulates assembly and egress of the virus. It is well established that VP40 assembles on the inner leaflet of the plasma membrane; however, the mechanistic details of plasma membrane association by VP40 are not well understood. In this study, we used an array of biophysical experiments and cellular assays along with mutagenesis of VP40 to investigate the role of membrane penetration in VP40 assembly and egress. Here we demonstrate that VP40 is able to penetrate specifically into the plasma membrane through an interface enriched in hydrophobic residues in its C-terminal domain. Mutagenesis of this hydrophobic region consisting of Leu213, Ile293, Leu295, and Val298 demonstrated that membrane penetration is critical to plasma membrane localization, VP40 oligomerization, and viral particle egress. Taken together, VP40 membrane penetration is an important step in the plasma membrane localization of the matrix protein where oligomerization and budding are defective in the absence of key hydrophobic interactions with the membrane.  相似文献   
38.
The peptide hormone relaxin is showing potential as a treatment for acute heart failure. Although it is known that relaxin mediates its actions through the G protein-coupled receptor relaxin family peptide receptor 1 (RXFP1), little is known about the molecular mechanisms by which relaxin binding results in receptor activation. Previous studies have highlighted that the unique N-terminal low density lipoprotein class A (LDLa) module of RXFP1 is essential for receptor activation, and it has been hypothesized that this module is the true “ligand” of the receptor that directs the conformational changes necessary for G protein coupling. In this study, we confirmed that an RXFP1 receptor lacking the LDLa module binds ligand normally but cannot signal through any characterized G protein-coupled receptor signaling pathway. Furthermore, we comprehensively examined the contributions of amino acids in the LDLa module to RXFP1 activity using both gain-of-function and loss-of-function mutational analysis together with NMR structural analysis of recombinant LDLa modules. Gain-of-function studies with an inactive RXFP1 chimera containing the LDLa module of the human LDL receptor (LB2) demonstrated two key N-terminal regions of the module that were able to rescue receptor signaling. Loss-of-function mutations of residues in these regions demonstrated that Leu-7, Tyr-9, and Lys-17 all contributed to the ability of the LDLa module to drive receptor activation, and judicious amino acid substitutions suggested this involves hydrophobic interactions. Our results demonstrate that these key residues contribute to interactions driving the active receptor conformation, providing further evidence of a unique mode of G protein-coupled receptor activation.  相似文献   
39.
Atherosclerosis, a leading cause of death worldwide, is associated with the excessive proliferation of vascular smooth muscle cells. Nitrogen monoxide, more commonly known as nitric oxide, inhibits this uncontrolled proliferation. Herein we report the preparation of two families of nitric oxide donors; beginning with the syntheses of secondary amine precursors, obtained through the reaction between 2 equiv of various monoamines with 2,4 or 2,6-difluoronitrobenzene. The purified secondary amines were nitrosated then subjected to a Griess reagent test to examine the slow and sustained nitric oxide release rate for each compound in both the absence and presence of reduced glutathione. The release rate profiles of these two isomeric families of NO-donors were strongly dependent on the number of side chain methylene units and the relative orientations of the nitro groups with respect to the N-nitroso moieties. The nitrosated compounds were then added to human aortic smooth muscle cell cultures, individually and in tandem with S-2-amino-6-boronic acid (ABH), a potent arginase inhibitor. Cell viability studies indicated a lack of toxicity of the amine precursors, in addition to anti-proliferative effects exhibited by the nitrosated compounds, which were enhanced in the presence of ABH.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号