首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   29篇
  国内免费   1篇
  191篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   9篇
  2014年   11篇
  2013年   16篇
  2012年   9篇
  2011年   5篇
  2010年   9篇
  2009年   6篇
  2008年   4篇
  2007年   8篇
  2006年   7篇
  2005年   13篇
  2004年   8篇
  2003年   6篇
  2002年   4篇
  2001年   5篇
  2000年   7篇
  1999年   10篇
  1998年   5篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1993年   3篇
  1992年   1篇
  1991年   3篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1985年   1篇
  1982年   1篇
  1980年   2篇
  1976年   1篇
  1974年   3篇
  1972年   1篇
  1965年   1篇
  1963年   1篇
排序方式: 共有191条查询结果,搜索用时 15 毫秒
21.
IL-2 stimulates extracellular signal-regulated protein kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) in various immune cell populations. The functional roles that these kinases play are still unclear. In this study, we examined whether MAPK kinase (MKK)/ERK and p38 MAPK pathways are necessary for IL-2 to activate NK cells. Using freshly isolated human NK cells, we established that an intact MKK/ERK pathway is necessary for IL-2 to activate NK cells to express at least four known biological responses: LAK generation, IFN-gamma secretion, and CD25 and CD69 expression. IL-2 induced ERK activation within 5 min. Treatment of NK cells with a specific inhibitor of MKK1/2, PD98059, during the IL-2 stimulation blocked in a dose-dependent manner each of four sequelae, with inhibition of lymphokine-activated killing induction being least sensitive to MKK/ERK pathway blockade. Activation of p38 MAPK by IL-2 was not detected in NK cells. In contrast to what was observed by others in T lymphocytes, SB203850, a specific inhibitor of p38 MAPK, did not inhibit IL-2-activated NK functions. This data indicate that p38 MAPK activation was not required for IL-2 to activate NK cells for the four functions examined. These results reveal selective signaling differences between NK cells and T lymphocytes; in NK cells, the MKK/ERK pathway and not p38 MAPK plays a critical positive regulatory role during activation by IL-2.  相似文献   
22.
Communities are riddled with indirect species interactions and these interactions can be modified by organisms that are parasitic or symbiotic with one of the indirectly interacting species. By inducing plant responses, herbivores are well known to alter the plant quality for subsequent feeders. The reduced performance of herbivores on induced plants cascades into effects on the performance of higher trophic level organisms such as parasitoids that develop inside herbivores. Parasitoids themselves may also, indirectly, interact with the host plant by affecting the behaviour and physiology of their herbivorous host. Here, we show that, through their herbivorous host, larvae of two parasitoid species differentially affect plant phenotypes leading to asymmetric interactions among parasitoid larvae developing in different hosts that feed on the same plant. Our results show that temporally separated parasitoid larvae are involved in indirect plant-mediated interactions by a network of trophic and non-trophic relationships.  相似文献   
23.
In Streptococcus lactis ML3 and Streptococcus cremoris Wg2 the uptake of glutamate and glutamine is mediated by the same transport system, which has a 30-fold higher affinity for glutamine than for glutamate at pH 6.0. The apparent affinity constant for transport (KT) of glutamine is 2.5 +/- 0.3 microM, independent of the extracellular pH. The KTS for glutamate uptake are 3.5, 11.2, 77, and 1200 microM at pH 4.0, 5.1, 6.0, and 7.0, respectively. Recalculation of the affinity constants based on the concentration of glutamic acid in the solution yield KTS of 1.8 +/- 0.5 microM independent of the external pH, indicating that the protonated form of glutamate, i.e., glutamic acid, and glutamine are the transported species. The maximal rates of glutamate and glutamine uptake are independent of the extracellular pH as long as the intracellular pH is kept constant, despite large differences in the magnitude and composition of the components of the proton motive force. Uptake of glutamate and glutamine requires the synthesis of ATP either from glycolysis or from arginine metabolism and appears to be essentially unidirectional. Cells are able to maintain glutamate concentration gradients exceeding 4 X 10(3) for several hours even in the absence of metabolic energy. The t1/2s of glutamate efflux are 2, 12, and greater than 30 h at pH 5.0, 6.0, and 7.0, respectively. After the addition of lactose as energy source, the rate of glutamine uptake and the level of ATP are both very sensitive to arsenate. When the intracellular pH is kept constant, both parameters decrease approximately in parallel (between 0.2 and 1.0 mM ATP) with increasing concentrations of the inhibitor. These results suggest that the accumulation of glutamate and glutamine is energized by ATP or an equivalent energy-rich phosphorylated intermediate and not by the the proton motive force.  相似文献   
24.
Most of our knowledge on learning and memory formation results from extensive studies on a small number of animal species. Although features and cellular pathways of learning and memory are highly similar in this diverse group of species, there are also subtle differences. Closely related species of parasitic wasps display substantial variation in memory dynamics and can be instrumental to understanding both the adaptive benefit of and mechanisms underlying this variation. Parasitic wasps of the genus Nasonia offer excellent opportunities for multidisciplinary research on this topic. Genetic and genomic resources available for Nasonia are unrivaled among parasitic wasps, providing tools for genetic dissection of mechanisms that cause differences in learning. This study presents a robust, high‐throughput method for olfactory conditioning of Nasonia using a host encounter as reward. A T‐maze olfactometer facilitates high‐throughput memory retention testing and employs standardized odors of equal detectability, as quantified by electroantennogram recordings. Using this setup, differences in memory retention between Nasonia species were shown. In both Nasonia vitripennis and Nasonia longicornis, memory was observed up to at least 5 days after a single conditioning trial, whereas Nasonia giraulti lost its memory after 2 days. This difference in learning may be an adaptation to species‐specific differences in ecological factors, for example, host preference. The high‐throughput methods for conditioning and memory retention testing are essential tools to study both ultimate and proximate factors that cause variation in learning and memory formation in Nasonia and other parasitic wasp species.  相似文献   
25.
In this study we show increased biomass formation for four species of food-grade propionic acid bacteria (Acidipropionibacterium acidipropionici, Acidipropionibacterium jensenii, Acidipropionibacterium thoenii and Propionibacterium freudenreichii) when exposed to oxygen, implicating functional respiratory systems. Using an optimal microaerobic condition, Pfreudenreichii DSM 20271 consumed lactate to produce propionate and acetate initially. When lactate was depleted propionate was oxidized to acetate. We propose to name the switch from propionate production to consumption in microaerobic conditions the ‘propionate switch’. When propionate was depleted the ‘acetate switch’ occurred, resulting in complete consumption of acetate. Both growth rate on lactate (0.100 versus 0.078 h−1) and biomass yield (20.5 versus 8.6 g* mol−1 lactate) increased compared to anaerobic conditions. Proteome analysis revealed that the abundance of proteins involved in the aerobic and anaerobic electron transport chains and major metabolic pathways did not significantly differ between anaerobic and microaerobic conditions. This implicates that P. freudenreichii is prepared for utilizing O2 when it comes available in anaerobic conditions. The ecological niche of propionic acid bacteria can conceivably be extended to environments with oxygen gradients from oxic to anoxic, so-called microoxic environments, as found in the rumen, gut and soils, where they can thrive by utilizing low concentrations of oxygen.  相似文献   
26.
27.
Fermentation employing Saccharomyces cerevisiae has produced alcoholic beverages and bread for millennia. More recently, S. cerevisiae has been used to manufacture specific metabolites for the food, pharmaceutical, and cosmetic industries. Among the most important of these metabolites are compounds associated with desirable aromas and flavors, including higher alcohols and esters. Although the physiology of yeast has been well-studied, its metabolic modulation leading to aroma production in relevant industrial scenarios such as winemaking is still unclear. Here we ask what are the underlying metabolic mechanisms that explain the conserved and varying behavior of different yeasts regarding aroma formation under enological conditions? We employed dynamic flux balance analysis (dFBA) to answer this key question using the latest genome-scale metabolic model (GEM) of S. cerevisiae. The model revealed several conserved mechanisms among wine yeasts, for example, acetate ester formation is dependent on intracellular metabolic acetyl-CoA/CoA levels, and the formation of ethyl esters facilitates the removal of toxic fatty acids from cells using CoA. Species-specific mechanisms were also found, such as a preference for the shikimate pathway leading to more 2-phenylethanol production in the Opale strain as well as strain behavior varying notably during the carbohydrate accumulation phase and carbohydrate accumulation inducing redox restrictions during a later cell growth phase for strain Uvaferm. In conclusion, our new metabolic model of yeast under enological conditions revealed key metabolic mechanisms in wine yeasts, which will aid future research strategies to optimize their behavior in industrial settings.  相似文献   
28.
The ability of bacteria to overcome oxidative stress is related to the levels and types of antioxidative mechanisms which they possess. In this study, the antioxidative properties in Lactobacillus sake strains from different food origins were determined at low temperature (8 degrees C) and upon exposure to oxygen levels between 20 and 90% O(2). The L. sake strains tested grew well at 8 degrees C and in the presence of 20% O(2), however, most of the strains could not grow at O(2) levels as high as 50 and/or 90%. Cell-free extracts of all strains possessed certain levels of hydroxyl radical scavenging, metal chelating and reducing capacities essential for growth of cells at ambient O(2). At elevated O(2) concentrations, a high H(2)O(2) splitting capacity and low specific rates of H(2)O(2) production were demonstrated in the O(2)-insensitive strain L. sake NCFB 2813, which could grow at elevated O(2) conditions. Although H(2)O(2) was generated in the O(2)-sensitive L. sake DSM 6333 at levels which were not directly toxic to the cells (<0.2 mM), we can conclude that its removal is essential for cell protection at elevated O(2) conditions.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号