首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   7篇
  108篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   5篇
  2014年   2篇
  2013年   8篇
  2012年   11篇
  2011年   10篇
  2010年   9篇
  2009年   7篇
  2008年   5篇
  2007年   6篇
  2006年   3篇
  2005年   2篇
  2004年   9篇
  2003年   6篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1983年   1篇
排序方式: 共有108条查询结果,搜索用时 15 毫秒
81.
We investigated a novel method for the selective separation of beta-carotene isomers from a freeze-dried powder of the algae Dunaliella bardawil using supercritical fluid extraction. The separation method relies on the different dissolution rate of the 9Z and all-E isomers of beta-carotene in SC-CO(2). At first, the equilibrium solubility of the two isomers in SC-CO(2) was determined at the extraction conditions of 44.8 MPa and 40 degrees C. The solubility of the 9Z isomer was found to be nearly 4 times higher than that of the all-E isomer (1.92 x 10(-5) g all-E isomer/g CO(2) compared to 7.64 x 10(-5) g 9Z isomer/g CO(2)). When supercritical fluid extraction was applied to a carotenoid concentrate from the algae (29 wt% beta-carotene) or a freeze-dried powder of the algae (3.1% beta-carotene), a selective separation of the 9Z/all-E isomers of beta-carotene was obtained. Thirty-nine percent recovery of beta-carotene with 80% purity of 9Z isomer was achieved at the initial stages of extraction (40 mL CO(2)). The extraction rate of beta-carotene from the freeze-dried algae powder was slower than that from the carotenoid concentrate, resulting in a reduction in the recovery and purity of the 9Z isomer. This indicates that even at the initial stage of the extraction the internal mass resistance is significant. Isomer purity and recovery could be enhanced upon grinding of the algae powder.  相似文献   
82.
83.
Trypanosoma brucei, the parasite that causes sleeping sickness, cycles between an insect and a mammalian host. However, the effect of RNA modifications such as pseudouridinylation on its ability to survive in these two different host environments is unclear. Here, two genome-wide approaches were applied for mapping pseudouridinylation sites (Ψs) on small nucleolar RNA (snoRNA), 7SL RNA, vault RNA, and tRNAs from T. brucei. We show using HydraPsiSeq and RiboMeth-seq that the Ψ on C/D snoRNA guiding 2′-O-methylation increased the efficiency of the guided modification on its target, rRNA. We found differential levels of Ψs on these noncoding RNAs in the two life stages (insect host and mammalian host) of the parasite. Furthermore, tRNA isoform abundance and Ψ modifications were characterized in these two life stages demonstrating stage-specific regulation. We conclude that the differential Ψ modifications identified here may contribute to modulating the function of noncoding RNAs involved in rRNA processing, rRNA modification, protein synthesis, and protein translocation during cycling of the parasite between its two hosts.  相似文献   
84.
Biomineralization is the process by which organisms use minerals to harden their tissues and provide them with physical support. Biomineralizing cells concentrate the mineral in vesicles that they secret into a dedicated compartment where crystallization occurs. The dynamics of vesicle motion and the molecular mechanisms that control it, are not well understood. Sea urchin larval skeletogenesis provides an excellent platform for investigating the kinetics of mineral-bearing vesicles. Here we used lattice light-sheet microscopy to study the three-dimensional (3D) dynamics of calcium-bearing vesicles in the cells of normal sea urchin embryos and of embryos where skeletogenesis is blocked through the inhibition of Vascular Endothelial Growth Factor Receptor (VEGFR). We developed computational tools for displaying 3D-volumetric movies and for automatically quantifying vesicle dynamics. Our findings imply that calcium vesicles perform an active diffusion motion in both, calcifying (skeletogenic) and non-calcifying (ectodermal) cells of the embryo. The diffusion coefficient and vesicle speed are larger in the mesenchymal skeletogenic cells compared to the epithelial ectodermal cells. These differences are possibly due to the distinct mechanical properties of the two tissues, demonstrated by the enhanced f-actin accumulation and myosinII activity in the ectodermal cells compared to the skeletogenic cells. Vesicle motion is not directed toward the biomineralization compartment, but the vesicles slow down when they approach it, and probably bind for mineral deposition. VEGFR inhibition leads to an increase of vesicle volume but hardly changes vesicle kinetics and doesn’t affect f-actin accumulation and myosinII activity. Thus, calcium vesicles perform an active diffusion motion in the cells of the sea urchin embryo, with diffusion length and speed that inversely correlate with the strength of the actomyosin network. Overall, our studies provide an unprecedented view of calcium vesicle 3D-dynamics and point toward cytoskeleton remodeling as an important effector of the motion of mineral-bearing vesicles.  相似文献   
85.
Accurate temporal control of gene expression is essential for normal development and must be robust to natural genetic and environmental variation. Studying gene expression variation within and between related species can delineate the level of expression variability that development can tolerate. Here we exploit the comprehensive model of sea urchin gene regulatory networks and generate high-density expression profiles of key regulatory genes of the Mediterranean sea urchin, Paracentrotus lividus (Pl). The high resolution of our studies reveals highly reproducible gene initiation times that have lower variation than those of maximal mRNA levels between different individuals of the same species. This observation supports a threshold behavior of gene activation that is less sensitive to input concentrations. We then compare Mediterranean sea urchin gene expression profiles to those of its Pacific Ocean relative, Strongylocentrotus purpuratus (Sp). These species shared a common ancestor about 40 million years ago and show highly similar embryonic morphologies. Our comparative analyses of five regulatory circuits operating in different embryonic territories reveal a high conservation of the temporal order of gene activation but also some cases of divergence. A linear ratio of 1.3-fold between gene initiation times in Pl and Sp is partially explained by scaling of the developmental rates with temperature. Scaling the developmental rates according to the estimated Sp-Pl ratio and normalizing the expression levels reveals a striking conservation of relative dynamics of gene expression between the species. Overall, our findings demonstrate the ability of biological developmental systems to tightly control the timing of gene activation and relative dynamics and overcome expression noise induced by genetic variation and growth conditions.  相似文献   
86.
87.
TMF/ARA160 is known to be a TATA element Modulatory Factor (TMF). It was initially identified as a DNA-binding factor and a coactivator of the Androgen receptor. It was also characterized as a Golgi-associated protein, which is essential for acrosome formation during functional sperm development. However, the molecular roles of TMF in this intricate process have not been revealed. Here, we show that during spermiogenesis, TMF undergoes a dynamic change of localization throughout the Golgi apparatus. Specifically, TMF translocates from the cis-Golgi to the trans-Golgi network and to the emerging vesicles surface, as the round spermatids develop. Notably, lack of TMF led to an abnormal spatial orientation of the Golgi and to the deviation of the trans-Golgi surface away from the nucleus of the developing round spermatids. Concomitantly, pro-acrosomal vesicles derived from the TMF-/- Golgi lacked targeting properties and did not tether to the spermatid nuclear membrane thereby failing to form the acrosome anchoring scaffold, the acroplaxome, around the cell-nucleus. Absence of TMF also perturbed the positioning of microtubules, which normally lie in proximity to the Golgi and are important for maintaining Golgi spatial orientation and dynamics and for chromatoid body formation, which is impaired in TMF-/- spermatids. In-silico evaluation combined with molecular and electron microscopic analyses revealed the presence of a microtubule interacting domain (MIT) in TMF, and confirmed the association of TMF with microtubules in spermatogenic cells. Furthermore, the MIT domain in TMF, along with microtubules integrity, are required for stable association of TMF with the Golgi apparatus. Collectively, we show here for the first time that a Golgi and microtubules associated protein is crucial for maintaining proper Golgi orientation during a cell developmental process.  相似文献   
88.
89.
90.
Very little is known about the mechanisms that contribute to organ size differences between species. In the present study, we used a mouse model of embryonic pig tissue implantation to define the role of host Factor VIII in controlling the final size attained by the implant. We show here that pig embryonic spleen, pancreas, and liver all grow to an increased size in mice that are deficient in the Factor VIII clotting cascade. Similar results were obtained using the transplantation model after treatment with the low molecular weight heparin derivative Clexane which markedly enhanced transplant size. Likewise, enhanced size was found upon treatment with the direct thrombin inhibitor Dabigatran, suggesting that organ size regulation might be mediated by thrombin, downstream of Factor VIII. Considering that thrombin was shown to mediate various functions unrelated to blood clotting, either directly by cleavage of protease-activated receptors (PARs) or indirectly by cleaving osteopontin (OPN) on stroma cells, the role of PAR1 and PAR4 antagonists as well as treatment with cleaved form of OPN (tcOPN) were tested. While the former was not found to have an impact on overgrowth of embryonic pig spleen implants, marked reduction of size was noted upon treatment with the (tcOPN). Collectively, our surprising set of observations suggests that factors of the coagulation cascade have a novel role in organ size control.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号