全文获取类型
收费全文 | 120篇 |
免费 | 7篇 |
专业分类
127篇 |
出版年
2022年 | 2篇 |
2021年 | 1篇 |
2020年 | 1篇 |
2018年 | 1篇 |
2017年 | 3篇 |
2016年 | 1篇 |
2015年 | 7篇 |
2014年 | 3篇 |
2013年 | 9篇 |
2012年 | 12篇 |
2011年 | 12篇 |
2010年 | 9篇 |
2009年 | 7篇 |
2008年 | 6篇 |
2007年 | 11篇 |
2006年 | 3篇 |
2005年 | 3篇 |
2004年 | 11篇 |
2003年 | 6篇 |
2002年 | 2篇 |
2001年 | 5篇 |
2000年 | 3篇 |
1999年 | 1篇 |
1994年 | 1篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1980年 | 1篇 |
排序方式: 共有127条查询结果,搜索用时 12 毫秒
81.
Ortal Madmon Moran Mazuz Puja Kumari Anandamoy Dam Aurel Ion Einav Mayzlish-Gati Eduard Belausov Smadar Wininger Mohamad Abu-Abied Christopher S. P. McErlean Liam J. Bromhead Rafael Perl-Treves Cristina Prandi Yoram Kapulnik Hinanit Koltai 《Planta》2016,243(6):1419-1427
Main conclusion
MAX2/strigolactone signaling in the endodermis and/or quiescent center of the root is partiallysufficient to exert changes in F-actin density and cellular trafficking in the root epidermis, and alter gene expression during plant response to low Pi conditions.Strigolactones (SLs) are a new group of plant hormones that regulate different developmental processes in the plant via MAX2, an F-box protein that interacts with their receptor. SLs and MAX2 are necessary for the marked increase in root-hair (RH) density in seedlings under conditions of phosphate (Pi) deprivation. This marked elevation was associated with an active reduction in actin-filament density and endosomal movement in root epidermal cells. Also, expression of MAX2 under the SCARECROW (SCR) promoter was sufficient to confer SL sensitivity in roots, suggesting that SL signaling pathways act through a root-specific, yet non-cell-autonomous regulatory mode of action. Here we show evidence for a non-cell autonomous signaling of SL/MAX2, originating from the root endodermis, and necessary for seedling response to conditions of Pi deprivation. SCR-derived expression of MAX2 in max2-1 mutant background promoted the root low Pi response, whereas supplementation of the synthetic SL GR24 to these SCR:MAX2 expressing lines further enhanced this response. Moreover, the SCR:MAX2 expression led to changes in actin density and endosome movement in epidermal cells and in TIR1 and PHO2 gene expression. These results demonstrate that MAX2 signaling in the endodermis and/or quiescent center is partially sufficient to exert changes in F-actin density and cellular trafficking in the epidermis, and alter gene expression under low Pi conditions.82.
83.
Joachim Kappler Peter Leinekugel Ernst Conzelmann Wim J. Kleijer Alfried Kohlschütter Tønne Tønnesen Michael Rochel F. Freycon Peter Propping 《Human genetics》1991,86(5):463-470
Summary Arylsulfatase A (ASA) is a lysosomal enzyme that hydrolyzes sulfatide. Absence of ASA activity leads to metachromatic leukodystrophy (MLD). The clinical outcome resulting from ASA deficiency is highly variable with respect to age of onset and symptoms. So far the causes for the variability are poorly understood. We have studied the relationship between the ASA genotype and the clinical phenotype. Fibroblasts from a total of 34 subjects with low ASA activity were examined with immunoblotting, a sensitive ASA assay, and the sulfatide loading test in order to characterize low ASA activity further. By these methods, three different classes of ASA deficiency can be defined: homozygosity for the pseudodeficiency allele (ASAP), compound heterozygosity for the ASAP and MLD (ASA–) alleles, and ASA–/ ASA– genotypes. These genotypes exhibit different levels of ASA residual activity. Only ASA–/ASA– genotypes are associated with MLD. For diagnostic purposes, however, the differentiation of the various ASA genotypes is essential. 相似文献
84.
Ciesielski F Rochel N Moras D 《The Journal of steroid biochemistry and molecular biology》2007,103(3-5):235-242
The crystal structure of the ligand binding domain (LBD) of the wild-type Vitamin D receptor (VDR) of zebrafish bound to Gemini, a synthetic agonist ligand with two identical side chains branching at carbon 20 reveals a ligand-dependent structural rearrangement of the ligand binding pocket (LBP). The rotation of a Leu side chain opens the access to a channel that can accommodate the second side chain of the ligand. The 25% increase of the LBP's volume does not alter the essential agonist features of VDR. The possibility to adapt the LBP to novel ligands with different chemistry and/or structure opens new perspectives in the design of more specifically targeted ligands. 相似文献
85.
K. Shanmugha Rajan Katerina Adler Tirza Doniger Smadar Cohen-Chalamish Noa Aharon-Hefetz Saurav Aryal Yitzhak Pilpel Christian Tschudi Ron Unger Shulamit Michaeli 《The Journal of biological chemistry》2022,298(7)
Trypanosoma brucei, the parasite that causes sleeping sickness, cycles between an insect and a mammalian host. However, the effect of RNA modifications such as pseudouridinylation on its ability to survive in these two different host environments is unclear. Here, two genome-wide approaches were applied for mapping pseudouridinylation sites (Ψs) on small nucleolar RNA (snoRNA), 7SL RNA, vault RNA, and tRNAs from T. brucei. We show using HydraPsiSeq and RiboMeth-seq that the Ψ on C/D snoRNA guiding 2′-O-methylation increased the efficiency of the guided modification on its target, rRNA. We found differential levels of Ψs on these noncoding RNAs in the two life stages (insect host and mammalian host) of the parasite. Furthermore, tRNA isoform abundance and Ψ modifications were characterized in these two life stages demonstrating stage-specific regulation. We conclude that the differential Ψ modifications identified here may contribute to modulating the function of noncoding RNAs involved in rRNA processing, rRNA modification, protein synthesis, and protein translocation during cycling of the parasite between its two hosts. 相似文献
86.
87.
Saskia Koehler Smadar Ovadia-Caro Elke van der Meer Arno Villringer Andreas Heinz Nina Romanczuk-Seiferth Daniel S. Margulies 《PloS one》2013,8(12)
Pathological gambling (PG) shares clinical characteristics with substance-use disorders and is thus discussed as a behavioral addiction. Recent neuroimaging studies on PG report functional changes in prefrontal structures and the mesolimbic reward system. While an imbalance between these structures has been related to addictive behavior, whether their dysfunction in PG is reflected in the interaction between them remains unclear. We addressed this question using functional connectivity resting-state fMRI in male subjects with PG and controls. Seed-based functional connectivity was computed using two regions-of-interest, based on the results of a previous voxel-based morphometry study, located in the prefrontal cortex and the mesolimbic reward system (right middle frontal gyrus and right ventral striatum). PG patients demonstrated increased connectivity from the right middle frontal gyrus to the right striatum as compared to controls, which was also positively correlated with nonplanning aspect of impulsiveness, smoking and craving scores in the PG group. Moreover, PG patients demonstrated decreased connectivity from the right middle frontal gyrus to other prefrontal areas as compared to controls. The right ventral striatum demonstrated increased connectivity to the right superior and middle frontal gyrus and left cerebellum in PG patients as compared to controls. The increased connectivity to the cerebellum was positively correlated with smoking in the PG group. Our results provide further evidence for alterations in functional connectivity in PG with increased connectivity between prefrontal regions and the reward system, similar to connectivity changes reported in substance use disorder. 相似文献
88.
Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress 总被引:25,自引:0,他引:25 下载免费PDF全文
Most of the symplastic water transport in plants occurs via aquaporins, but the extent to which aquaporins contribute to plant water status under favorable growth conditions and abiotic stress is not clear. To address this issue, we constitutively overexpressed the Arabidopsis plasma membrane aquaporin, PIP1b, in transgenic tobacco plants. Under favorable growth conditions, PIP1b overexpression significantly increased plant growth rate, transpiration rate, stomatal density, and photosynthetic efficiency. By contrast, PIP1b overexpression had no beneficial effect under salt stress, whereas during drought stress it had a negative effect, causing faster wilting. Our results suggest that symplastic water transport via plasma membrane aquaporins represents a limiting factor for plant growth and vigor under favorable conditions and that even fully irrigated plants face limited water transportation. By contrast, enhanced symplastic water transport via plasma membrane aquaporins may not have any beneficial effect under salt stress, and it has a deleterious effect during drought stress. 相似文献
89.
90.
Bioreactor cultivation enhances the efficiency of human embryoid body (hEB) formation and differentiation 总被引:8,自引:0,他引:8
The promise of human embryonic stem cells (hESCs) to provide an unlimited supply of cells for cell therapy and tissue engineering depends on the availability of a controllable bioprocess for their expansion and differentiation. We describe for the first time the formation of differentiating human embryoid bodies (hEBs) in rotating bioreactors to try and control their agglomeration. The efficacy of the dynamic process compared to static cultivation in Petri dishes was analyzed with respect to the yield of hEB formation and differentiation. Quantitative analyses of hEBs, DNA and protein contents, and viable cell concentration, as measures for culture cellularity and scale-up, revealed 3-fold enhancement in generation of hEBs compared to the static culture. Other metabolic indices such as glucose consumption, lactic acid production, and pH pointed to efficient cell expansion and differentiation in the dynamic cultures. The type of rotating vessel had a significant impact on the process of hEB formation and agglomeration. In the slow turning lateral vessel (STLV), hEBs were smaller in size and no large necrotic centers were seen, even after 1-month cultivation. In the high aspect rotating vessel (HARV), hEB agglomeration was massive. The appearance of representative tissues derived from the three germ layers as well as primitive neuronal tube organization, blood vessel formation, and specific-endocrine secretion indicated that the initial developmental events are not altered in the dynamically formed hEBs. Collectively, our study defines the culture conditions in which control over the aggregation of differentiating hESCs is obtained, thus enabling scaleable cell production for clinical and industrial applications. 相似文献