首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   17篇
  246篇
  2023年   1篇
  2022年   1篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   5篇
  2012年   8篇
  2011年   13篇
  2010年   7篇
  2009年   2篇
  2008年   8篇
  2007年   9篇
  2006年   7篇
  2005年   8篇
  2004年   6篇
  2003年   10篇
  2002年   6篇
  2001年   5篇
  2000年   11篇
  1999年   11篇
  1998年   3篇
  1997年   3篇
  1996年   5篇
  1995年   1篇
  1994年   7篇
  1993年   10篇
  1992年   7篇
  1991年   13篇
  1990年   12篇
  1989年   2篇
  1988年   9篇
  1987年   5篇
  1986年   1篇
  1985年   3篇
  1984年   6篇
  1983年   5篇
  1982年   6篇
  1980年   2篇
  1979年   1篇
  1978年   7篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1968年   2篇
  1966年   1篇
排序方式: 共有246条查询结果,搜索用时 0 毫秒
141.
Abstract The effect of a range of dichloromethane (DCM) concentrations on the growth of five obligate methanotrophic bacteria of the genera Methylomonas, “Methylosinus” , and Methylocystis was assessed. DCM concentrations of 78 mM were bactericidal for all strains. Concentrations of 7.8 mM–156 μM were bacteriostatic for Methylocystis parvus ACM 3309 and Methylomonas aurantiaca HB2, and partially inhibitory for Methylomonas methanica strains ACM 3307 and HB1. “Methylosinus trichosporium” ACM 3311 grew in the presence of up to 780 μm DCM, but a concentration of 7.8 mM was bacteriostatic.  相似文献   
142.
A tracking impedance estimation technique was developed to follow the changes in total respiratory impedance (Zrs) during slow total lung capacity maneuvers in six anesthetized and mechanically ventilated BALB/c mice. Zrs was measured with the wave-tube technique and pseudorandom forced oscillations at nine frequencies between 4 and 38 Hz during inflation from a transrespiratory pressure of 0-20 cmH2O and subsequent deflation, each lasting for approximately 20 s. Zrs was averaged for 0.125 s and fitted by a model featuring airway resistance (Raw) and inertance, and tissue damping and elastance (H). Lower airway conductance (Glaw) was linearly related to volume above functional residual capacity (V) between 0 and 75-95% maximum V, with a mean slope of dGlaw/dV = 13.6 +/- 4.6 cmH2O-1. s-1. The interdependence of Raw and H was characterized by two distinct and closely linear relationships for the low- and high-volume regions, separated at approximately 40% maximum V. Comparison of Raw with the highest-frequency resistance of the total respiratory system revealed a marked volume-dependent contribution of tissue resistance to total respiratory system resistance, resulting in the overestimation of Raw by 19 +/- 8 and 163 +/- 40% at functional residual capacity and total lung capacity, respectively, whereas the lowest frequency reactance was proportional to H; these findings indicate that single-frequency resistance values may become inappropriate as surrogates of Raw when tissue impedance is changing.  相似文献   
143.
To examine the effects of changes in lung volume on the magnitude of maximal bronchoconstriction, seven anesthetized, paralyzed, tracheostomized cats were challenged with aerosolized methacholine (MCh) and respiratory system resistance (Rss) was measured at different lung volumes using the interrupter technique. Analysis of the pressure changes following end-inspiratory interruptions allowed us to partition Rss into two quantities with the units of resistance, one (Rinit) corresponding to the resistance of the airways and the other (Rdif) reflecting the viscoelastic properties of the tissues of the respiratory system as well as gas redistribution following interruption of flow. Rinit and Rdif were used to construct concentration-response curves to MCh. Lung volume was increased by the application of 5, 10, and 15 cmH2O of positive end-expiratory pressure. The curve for Rinit reached a plateau in all cats, demonstrating a limit to the degree of MCh-induced bronchoconstriction. The mean value of Rinit (cmH2O.ml-1.s) for the group under control conditions was 0.011 and rose to 0.058 after maximal bronchoconstriction; the volume at which the flow was interrupted was 11.5 +/- 0.5 (SE) ml/kg above functional residual capacity (FRC). It then fell progressively to 0.029 at 21.2 +/- 0.8 ml/kg above FRC, 0.007 at 35.9 +/- 1.3 ml/kg above FRC, and 0.005 at 52.0 +/- 1.8 ml/kg above FRC. Cutting either the sympathetic or parasympathetic branches of the vagi had no significant effect on the lung volume-induced changes in MCh-induced bronchoconstriction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
144.
The ubiquitous enzyme carbonic anhydrase isoform II (CAII) has been shown to enhance transport activity of the proton-coupled monocarboxylate transporters MCT1 and MCT4 in a non-catalytic manner. In this study, we investigated the role of cytosolic CAII and of the extracellular, membrane-bound CA isoform IV (CAIV) on the lactate transport activity of the high-affinity monocarboxylate transporter MCT2, heterologously expressed in Xenopus oocytes. In contrast to MCT1 and MCT4, transport activity of MCT2 was not altered by CAII. However, coexpression of CAIV with MCT2 resulted in a significant increase in MCT2 transport activity when the transporter was coexpressed with its associated ancillary protein GP70 (embigin). The CAIV-mediated augmentation of MCT2 activity was independent of the catalytic activity of the enzyme, as application of the CA-inhibitor ethoxyzolamide or coexpressing the catalytically inactive mutant CAIV-V165Y did not suppress CAIV-mediated augmentation of MCT2 transport activity. Furthermore, exchange of His-88, mediating an intramolecular H(+)-shuttle in CAIV, to alanine resulted only in a slight decrease in CAIV-mediated augmentation of MCT2 activity. The data suggest that extracellular membrane-bound CAIV, but not cytosolic CAII, augments transport activity of MCT2 in a non-catalytic manner, possibly by facilitating a proton pathway other than His-88.  相似文献   
145.
Antenatal exposure to intra-amniotic (i.a.) endotoxin initiates a complex series of events, including an inflammatory cascade, increased surfactant production, and alterations to lung structure. Using the low frequency forced oscillation technique as a sensitive tool for measurement of respiratory impedance, we aimed to determine which factors contributed most to measured changes in lung mechanics. Respiratory impedance data obtained from sedated preterm lambs exposed to either i.a. injection with saline or 20 mg of endotoxin 1, 2, 4, and 15 days before delivery at 125 days gestation were studied, and association with indexes of standard lung morphometry, inflammatory response, and alveolar surfactant-saturated phosphatidylcholine (Sat PC) pool size was demonstrated. Reduction in tissue impedance with increasing interval between exposure and delivery was evident as early as 4 days after i.a. endotoxin injection, coinciding with resolution of inflammatory reaction, increased alveolar surfactant pools, and contribution of alveolar ducts to the parenchymal fraction, and a later decrease in the tissue component of the parenchymal fraction. Decreases in tissue damping (resistance) were more marked than decreases in tissue elastance. Log alveolar Sat PC accounted for most variability in tissue damping (88.9%) and tissue elastance (73.4%), whereas tissue fraction contributed 2 and 6.4%, respectively. The alveolar Sat PC pool size was the sole factor contributing to change in tissue hysteresivity. No changes were observed in airway resistance. Despite the complex cascade of events initiated by antenatal endotoxin exposure, variability in lung tissue mechanics is associated primarily with changes in alveolar Sat PC pool and lung morphology.  相似文献   
146.
The internalization of surface-bound diphtheria toxin (DT) in BS-C-1 cells correlated with its appearance in intracellular endosomal vesicles; essentially no toxin appeared within secondary lysosomal vesicles. In contrast, internalized epidermal growth factor (EGF) was localized within both endosomal and lysosomal vesicles. Upon preincubation of cells with leupeptin, a lysosomal protease inhibitor, a threefold increase in the accumulation of EGF into lysosomes was observed. Under identical conditions, essentially all of the diphtheria toxin remained within endosomes (less than 2% of the intracellular diphtheria toxin accumulated in the lysosomal fraction), indicating that the inability to detect diphtheria toxin in lysosomes was not due to its rapid turnover within this vesicle. Following internalization of EGF or DT, up to 40% of the ligand appeared in the medium as TCA-soluble radioactivity. EGF degradation was partially leupeptin-sensitive and markedly NH4Cl-sensitive, indicating lysosomal degradation. In contrast, DT A-fragment degradation was resistant to these inhibitors, while B-fragment showed only partial sensitivity. These data suggest that the bulk of endocytosed diphtheria toxin is localized within endosomes and degraded by a pathway essentially independent of lysosomes.  相似文献   
147.
To investigate the bases for evolutionary changes in developmental mode, we fertilized eggs of a direct-developing sea urchin, Heliocidaris erythrogramma, with sperm from a closely related species, H. tuberculata, that undergoes indirect development via a feeding larva. The resulting hybrids completed development to form juvenile adult sea urchins. Hybrids exhibited restoration of feeding larval structures and paternal gene expression that have been lost in the evolution of the direct-developing maternal species. However, the developmental outcome of the hybrids was not a simple reversion to the paternal pluteus larval form. An unexpected result was that the ontogeny of the hybrids was distinct from either parental species. Early hybrid larvae exhibited a novel morphology similar to that of the dipleurula-type larva typical of other classes of echinoderms and considered to represent the ancestral echinoderm larval form. In the hybrid developmental program, therefore, both recent and ancient ancestral features were restored. That is, the hybrids exhibited features of the pluteus larval form that is present in both the paternal species and in the immediate common ancestor of the two species, but they also exhibited general developmental features of very distantly related echinoderms. Thus in the hybrids, the interaction of two genomes that normally encode two disparate developmental modes produces a novel but harmonious ontongeny.  相似文献   
148.

Objectives

Survival Motor Neuron (SMN) protein levels may become key pharmacodynamic (PD) markers in spinal muscular atrophy (SMA) clinical trials. SMN protein in peripheral blood mononuclear cells (PBMCs) can be quantified for trials using an enzyme-linked immunosorbent assay (ELISA). We developed protocols to collect, process, store and analyze these samples in a standardized manner for SMA clinical studies, and to understand the impact of age and intraindividual variability over time on PBMC SMN signal.

Methods

Several variables affecting SMN protein signal were evaluated using an ELISA. Samples were from healthy adults, adult with respiratory infections, SMA patients, and adult SMA carriers.

Results

Delaying PBMCs processing by 45 min, 2 hr or 24 hr after collection or isolation allows sensitive detection of SMN levels and high cell viability (>90%). SMN levels from PBMCs isolated by EDTA tubes/Lymphoprep gradient are stable with processing delays and have greater signal compared to CPT-collected samples. SMN signal in healthy individuals varies up to 8x when collected at intervals up to 1 month. SMN signals from individuals with respiratory infections show 3–5x changes, driven largely by the CD14 fraction. SMN signal in PBMC frozen lysates are relatively stable for up to 6 months. Cross-sectional analysis of PBMCs from SMA patients and carriers suggest SMN protein levels decline with age.

Conclusions

The sources of SMN signal variability in PBMCs need to be considered in the design and of SMA clinical trials, and interpreted in light of recent medical history. Improved normalization to DNA or PBMC subcellular fractions may mitigate signal variability and should be explored in SMA patients.  相似文献   
149.
The Syrian hamster embryo (SHE) cell transformation assay (CTA) is an important in vitro method that is highly predictive of rodent carcinogenicity. It is a key method for reducing animal usage for carcinogenicity prediction. The SHE assay has been used for many years primarily to investigate and identify potential rodent carcinogens thereby reducing the number of 2-year bioassays performed in rodents. As for other assays with a long history of use, the SHE CTA has not undergone formal validation. To address this, the European Centre for the Validation of Alternative Methods (ECVAM) coordinated a prevalidation study. The aim of this study was to evaluate the within-laboratory reproducibility, test method transferability, and between-laboratory reproducibility and to develop a standardised state-of-the-art protocol for the SHE CTA at pH 6.7. Formal ECVAM principles for criteria on reproducibility (including the within-laboratory reproducibility, the transferability and the between-laboratories reproducibility) were applied. In addition to the assessment of reproducibility, this study helped define a standard protocol for use in developing an Organisation for Economic Co-operation and Development (OECD) test guideline for the SHE CTA. Six compounds were evaluated in this study: benzo(a)pyrene, 3-methylcholanthrene, o-toluidine HCl, 2,4-diaminotoluene, phthalic anhydride and anthracene. Results of this study demonstrate that a protocol is available that is transferable between laboratories, and that the SHE CTA at pH 6.7 is reproducible within- and between-laboratories.  相似文献   
150.
The effect of human bile juice and bile salts (sodium cholate, sodium taurocholate, sodium glycochenodeoxycholate and sodium chenodeoxycholate) on growth, sporulation and enterotoxin production by enterotoxin-positive and enterotoxin-negative strains of Clostridium perfringens was determined. Each bile salt inhibited growth to a different degree. A mixture of bile salts completely inhibited the growth of enterotoxin-positive strains of this organism. Human bile juice completely inhibited the growth of all the strains at a dilution of 1:320. A distinct stimulatory effect of the bile salts on sporulation was observed in the case of C. perfringens strains NCTC 8239 and NCTC 8679. The salts also increased enterotoxin concentrations in the cell extracts of the enterotoxin-positive strains tested. No effect on enterotoxin production was detected when an enterotoxin-negative strain was examined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号