首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2648篇
  免费   179篇
  2827篇
  2024年   4篇
  2023年   19篇
  2022年   46篇
  2021年   93篇
  2020年   46篇
  2019年   67篇
  2018年   89篇
  2017年   76篇
  2016年   108篇
  2015年   162篇
  2014年   209篇
  2013年   225篇
  2012年   300篇
  2011年   254篇
  2010年   154篇
  2009年   139篇
  2008年   135篇
  2007年   144篇
  2006年   119篇
  2005年   105篇
  2004年   94篇
  2003年   76篇
  2002年   67篇
  2001年   11篇
  2000年   6篇
  1999年   17篇
  1998年   10篇
  1997年   6篇
  1996年   6篇
  1995年   2篇
  1994年   7篇
  1993年   12篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1982年   2篇
  1980年   3篇
  1979年   1篇
  1977年   1篇
  1974年   1篇
  1972年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有2827条查询结果,搜索用时 10 毫秒
11.
We have synthesized and evaluated a series of 1,4-disubstituted-triazole derivatives for inhibition of the rat NaV1.6 sodium channel isoform, an isoform thought to play an important role in controlling neuronal firing. Starting from a series of 2,4(1H)-diarylimidazoles previously published, we decided to extend the SAR study by replacing the imidazole with a different heterocyclic scaffold and by varying the aryl substituents on the central aromatic ring. The 1,4-disubstituted 1,2,3-triazoles were prepared employing the copper-catalyzed azide–alkyne cycloaddition (CuAAC). Many of the new molecules were able to block the rNav1.6 currents at 10 μM by over 20%, displaying IC50 values ranging in the low micromolar, thus indicating that triazole can efficiently replace the central heterocyclic core. Moreover, the introduction of a long chain at C4 of the central triazole seems beneficial for increased rNav1.6 current block, whereas the length of N1 substituent seems less crucial for inhibition, as long as a phenyl ring is not direcly connected to the triazole. These results provide additional information on the structural features necessary for block of the voltage-gated sodium channels. These new data will be exploited in the preparation of new compounds and could result in potentially useful AEDs.  相似文献   
12.
Studying cartilage differentiation, we observed the emergence of inflammation-related proteins suggesting that a common pathway was activated in cartilage differentiation and inflammation. In the present paper, we investigated the expression pathway of the inflammation-related enzyme Cyclooxygenase-2 (COX-2) during differentiation and inflammatory response of the chondrocytic cell line MC615. Cells were cultured either as (i) proliferating prechondrogenic cells expressing type I collagen or (ii) differentiated hyperconfluent cells expressing Sox9 and type II collagen. The p38 and the NF-kB pathways were investigated in standard conditions and after inflammatory agents treatment. NF-kB was constitutively activated in differentiated cells. The activation level of NF-kB in differentiated cells was comparable to the level in proliferating cells treated with the inflammatory agent LPS. In both cases, p65 was bound to the NF-kB consensus sequence of COX-2 promoter. p38, constitutively activated in differentiated cells, was activated in proliferating cells by treatment with LPS or IL-1alpha. In stimulated proliferating cells the two pathways are connected since addition of the p38-specific inhibitor SB203580 inhibited p38 activation, significantly reduced NF-kB activation and repressed COX-2 synthesis indicating that p38 is upstream NF-kB activation and COX-2 synthesis. In differentiated cells, the treatment with the inflammatory agent neither enhance NF-kB activation, nor synthesis of COX-2 while the addition of SB203580 neither repressed activation of p38, nor COX-2 synthesis, suggesting a constitutive activation of a p38/NF-kB/COX2 pathway. Our data indicate that in chondrocytes, COX-2 is expressed via p38 activation/NF-kB recruitment during both differentiation and inflammatory response.  相似文献   
13.
Acylation of the N-terminal Cys residue is an essential, ubiquitous, and uniquely bacterial posttranslational modification that allows anchoring of proteins to the lipid membrane. In gram-negative bacteria, acylation proceeds through three sequential steps requiring lipoprotein diacylglyceryltransferase, lipoprotein signal peptidase, and finally lipoprotein N-acyltransferase. The apparent lack of genes coding for recognizable homologs of lipoprotein N-acyltransferase in gram-positive bacteria and Mollicutes suggests that the final step of the protein acylation process may be absent in these organisms. In this work, we monitored the acylation state of eight major lipoproteins of the mollicute Acholeplasma laidlawii using a combination of standard two-dimensional gel electrophoresis protein separation, blotting to nitrocellulose membranes, and MALDI-MS identification of modified N-terminal tryptic peptides. We show that for each A. laidlawii lipoprotein studied a third fatty acid in an amide linkage on the N-terminal Cys residue is present, whereas diacylated species were not detected. The result thus proves that A. laidlawii encodes a lipoprotein N-acyltransferase activity. We hypothesize that N-acyltransferases encoded by genes non-homologous to N-acyltransferases of gram-negative bacteria are also present in other mollicutes and gram-positive bacteria.  相似文献   
14.
Regional climate change in Antarctica would favor the carbon assimilation of Antarctic vascular plants, since rising temperatures are approaching their photosynthetic optimum (10–19°C). This could be detrimental for photoprotection mechanisms, mainly those associated with thermal dissipation, making plants more susceptible to eventual drought predicted by climate change models. With the purpose to study the effect of temperature and water availability on light energy utilization and putative adjustments in photoprotective mechanisms of Deschampsia antarctica Desv., plants were collected from two Antarctic provenances: King George Island and Lagotellerie Island. Plants were cultivated at 5, 10 and 16°C under well‐watered (WW) and water‐deficit (WD, at 35% of the field capacity) conditions. Chlorophyll fluorescence, pigment content and de‐epoxidation state were evaluated. Regardless of provenances, D. antarctica showed similar morphological, biochemical and functional responses to growth temperature. Higher temperature triggered an increase in photochemical activity (i.e. electron transport rate and photochemical quenching), and a decrease in thermal dissipation capacity (i.e. lower xanthophyll pool, Chl a/b and β carotene/neoxanthin ratios). Leaf mass per unit area was reduced at higher temperature, and was only affected in plants exposed to WD at 16°C and exhibiting lower electron transport rate and amount of chlorophylls. D. antarctica is adapted to frequent freezing events, which may induce a form of physiological water stress. Photoprotective responses observed under WD contribute to maintain a stable photochemical activity. Thus, it is possible that short‐term temperature increases could favor the photochemical activity of this species. However, long‐term effects will depend on the magnitude of changes and the plant's ability to adjust to new growth temperature.  相似文献   
15.
This paper summarises the experience accumulated duringthe field application of biopreparation `Rhoder' (solely or in a combinationwith preliminary mechanical collection of free oil) for remediation of oil polluted aquatic systems and soils in the Moscow region and Western Siberia during 1994–1999.It was demonstrated that `Rhoder' had a very high efficiency (>99%) for bioremediation of the open aquatic surfaces (100 m2 bay of the River Chernaya, two 5,000 m2 lakes in Vyngayakha) at initial level of oil pollution of 0.4–19.1 g/l. During remediation of the wetland (2,000 m2) in Urai (initial level of oil pollution of 10.5 g/l), a preliminary mechanical collection of oil was applied (75% removal) followed by a triple treatment with `Rhoder'. It resulted in an overall treatment efficiency of 94%. Relatively inferior results of bioremediation of the 10,000 m2 wetland in Vyngayakha (65% removal) and the 1,000 m2 marshy peat soil in Nizhnevartovsk (19% removal) can be attributed to the very high initial level of oil pollution (24.3 g/l and >750 g/g dry matter, respectively) aggravated by the fact that it was impossible to apply a preliminary mechanical collection of oil on these sites. A possible strategy for remediation of such heavily polluted sitesis discussed.  相似文献   
16.
A series of carbamate derivatives of the H(3) antagonist ROS203 (1) were prepared, and their lipophilicity and steric hindrance were modulated by introducing linear or branched alkyl chains of various lengths. In vitro stability studies were conducted to evaluate how structural modulations affect the intrinsic reactivity of the carbamoyl moiety and its recognition by metabolic enzymes. Linear alkyl carbamates were the most susceptible to enzymatic hydrolysis, with bioconversion rates being higher in rat liver and plasma. Chain ramification significantly enhanced the enzymatic stability of the set, with two derivatives (1g and 1h) being more stable by a factor of 8-40 than the ethyl carbamate 1a. Incubation with bovine serum albumin (BSA) showed a protective role of proteins on chemical and porcine-liver esterase (PLE)-catalyzed hydrolysis. Ex vivo binding data after i.v. administration of 1h revealed prolonged displacement of the labeled ligand [(3)H]-(R)-alpha-methylhistamine ([(3)H]RAMHA) from rat-brain cortical membranes, when compared to 1. However, the high rates of bioconversion in liver, as well as the chemical instability of 1h, suggest that further work is needed to optimize the enzymatic and chemical stability of these compounds.  相似文献   
17.
Shiga toxins (Stx) play an important role in the pathogenesis of hemolytic uremic syndrome, a life-threatening renal sequela of human intestinal infection caused by specific Escherichia coli strains. Stx target a restricted subset of human endothelial cells that possess the globotriaosylceramide receptor, like that in renal glomeruli. The toxins, composed of five B chains and a single enzymatic A chain, by removing adenines from ribosomes and DNA, trigger apoptosis and the production of pro-inflammatory cytokines in target cells. Because bacteria are confined to the gut, the toxins move to the kidney through the circulation. Polymorphonuclear leukocytes (PMN) have been indicated as the carriers that "piggyback" shuttle toxins to the kidney. However, there is no consensus on this topic, because not all laboratories have been able to reproduce the Stx/PMN interaction. Here, we demonstrate that conformational changes of Shiga toxin 1, with reduction of α-helix content and exposition to solvent of hydrophobic tryptophan residues, cause a loss of PMN binding activity. The partially unfolded toxin was found to express both enzymatic and globotriaosylceramide binding activities being fully active in intoxicating human endothelial cells; this suggests the presence of a distinct PMN-binding domain. By reviewing functional and structural data, we suggest that A chain moieties close to Trp-203 are recognized by PMN. Our findings could help explain the conflicting results regarding Stx/PMN interactions, especially as the groups reporting positive results obtained Stx by single-step affinity chromatography, which could have preserved the correct folding of Stx with respect to more complicated multi-step purification methods.  相似文献   
18.
The white-rot fungus Lentinus edodes produced D: -melibiose-specific lectins and two laccase forms in a lignin-containing medium. The maxima of laccase and lectin activities coincided, falling within the period of active mycelial growth. The enzymes and lectins were isolated and purified by gel filtration followed by anion-exchange chromatography. The L. edodes lectins were found to be able to stabilize the activity of the fungus's own laccases. Lectin activity during the formation of lectin-enzyme complexes remained unchanged.  相似文献   
19.
20.
Aflatoxins (AF) are contaminants of improperly stored foods; they are potent genotoxic and carcinogenic compounds, exerting their effects through damage to DNA. They can also induce mutations that increase oxidative damage. The goal of this study was to evaluate the possibility that a third mechanism could be involved in the carcinogenic action of aflatoxins, namely, direct binding to key enzymes involved in the regulatory pathways of the cell cycle, thereby modulating enzyme functionality. The 20S constitutive and immunoproteasome peptidase and proteolytic activities were assayed in the presence of aflatoxins B1, G1 and M1. All three toxins activated multiple peptidase activities of the proteasome. Aflatoxin (AF) M1 was the most potent activator of proteasome activity, while the constitutive 20S proteasome was specifically stimulated by AFG1. Furthermore, the effects of AFB1 on cultured hepatoma cells were investigated and the various proteasomal activities determined with cell lysates were differently affected. Taking into account the key role of the proteasome in cellular defense against oxidative stress, the carbonyl group content and the activities of antioxidant enzymes in cell lysates were analyzed. The proapoptotic effect of AFB1 was also investigated by measuring caspase-3 activity and cellular levels of p27 and IkappaBalpha.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号