首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   691篇
  免费   66篇
  2022年   6篇
  2021年   14篇
  2020年   6篇
  2019年   7篇
  2018年   10篇
  2017年   9篇
  2016年   12篇
  2015年   30篇
  2014年   23篇
  2013年   45篇
  2012年   36篇
  2011年   30篇
  2010年   27篇
  2009年   25篇
  2008年   22篇
  2007年   37篇
  2006年   19篇
  2005年   16篇
  2004年   20篇
  2003年   20篇
  2002年   18篇
  2001年   9篇
  2000年   12篇
  1999年   21篇
  1997年   10篇
  1996年   5篇
  1995年   9篇
  1994年   10篇
  1993年   8篇
  1992年   12篇
  1991年   9篇
  1990年   5篇
  1989年   14篇
  1988年   11篇
  1987年   22篇
  1986年   13篇
  1985年   8篇
  1984年   8篇
  1983年   8篇
  1982年   5篇
  1981年   5篇
  1979年   12篇
  1978年   13篇
  1977年   7篇
  1976年   7篇
  1975年   9篇
  1974年   6篇
  1973年   6篇
  1972年   5篇
  1924年   4篇
排序方式: 共有757条查询结果,搜索用时 328 毫秒
131.
132.
The human immunodeficiency virus (HIV) capsid (CA) protein assembles into a hexameric lattice that forms the mature virus core. Contacts between the CA N-terminal domain (NTD) of one monomer and the C-terminal domain (CTD) of the adjacent monomer are important for the assembly of this core. In this study, we have examined the effects of mutations in the NTD region associated with this interaction. We have found that such mutations yielded modest reductions of virus release but major effects on viral infectivity. Cell culture and in vitro assays indicate that the infectivity defects relate to abnormalities in the viral cores. We have selected second-site compensatory mutations that partially restored HIV infectivity. These mutations map to the CA CTD and to spacer peptide 1 (SP1), the portion of the precursor Gag protein immediately C terminal to the CTD. The compensatory mutations do not locate to the molecularly modeled intermolecular NTD-CTD interface. Rather, the compensatory mutations appear to act indirectly, possibly by realignment of the C-terminal helix of the CA CTD, which participates in the NTD-CTD interface and has been shown to serve an important role in the assembly of infectious virus.  相似文献   
133.
134.
Persistent latent reservoir of replication-competent proviruses in memory CD4 T cells is a major obstacle to curing HIV infection. Pharmacological activation of HIV expression in latently infected cells is being explored as one of the strategies to deplete the latent HIV reservoir. In this study, we characterized the ability of romidepsin (RMD), a histone deacetylase inhibitor approved for the treatment of T-cell lymphomas, to activate the expression of latent HIV. In an in vitro T-cell model of HIV latency, RMD was the most potent inducer of HIV (EC50 = 4.5 nM) compared with vorinostat (VOR; EC50 = 3,950 nM) and other histone deacetylase (HDAC) inhibitors in clinical development including panobinostat (PNB; EC50 = 10 nM). The HIV induction potencies of RMD, VOR, and PNB paralleled their inhibitory activities against multiple human HDAC isoenzymes. In both resting and memory CD4 T cells isolated from HIV-infected patients on suppressive combination antiretroviral therapy (cART), a 4-hour exposure to 40 nM RMD induced a mean 6-fold increase in intracellular HIV RNA levels, whereas a 24-hour treatment with 1 µM VOR resulted in 2- to 3-fold increases. RMD-induced intracellular HIV RNA expression persisted for 48 hours and correlated with sustained inhibition of cell-associated HDAC activity. By comparison, the induction of HIV RNA by VOR and PNB was transient and diminished after 24 hours. RMD also increased levels of extracellular HIV RNA and virions from both memory and resting CD4 T-cell cultures. The activation of HIV expression was observed at RMD concentrations below the drug plasma levels achieved by doses used in patients treated for T-cell lymphomas. In conclusion, RMD induces HIV expression ex vivo at concentrations that can be achieved clinically, indicating that the drug may reactivate latent HIV in patients on suppressive cART.  相似文献   
135.
The native forests of Borneo have been impacted by selective logging, fire, and conversion to plantations at unprecedented scales since industrial-scale extractive industries began in the early 1970s. There is no island-wide documentation of forest clearance or logging since the 1970s. This creates an information gap for conservation planning, especially with regard to selectively logged forests that maintain high conservation potential. Analysing LANDSAT images, we estimate that 75.7% (558,060 km2) of Borneo''s area (737,188 km2) was forested around 1973. Based upon a forest cover map for 2010 derived using ALOS-PALSAR and visually reviewing LANDSAT images, we estimate that the 1973 forest area had declined by 168,493 km2 (30.2%) in 2010. The highest losses were recorded in Sabah and Kalimantan with 39.5% and 30.7% of their total forest area in 1973 becoming non-forest in 2010, and the lowest in Brunei and Sarawak (8.4%, and 23.1%). We estimate that the combined area planted in industrial oil palm and timber plantations in 2010 was 75,480 km2, representing 10% of Borneo. We mapped 271,819 km of primary logging roads that were created between 1973 and 2010. The greatest density of logging roads was found in Sarawak, at 0.89 km km−2, and the lowest density in Brunei, at 0.18 km km−2. Analyzing MODIS-based tree cover maps, we estimate that logging operated within 700 m of primary logging roads. Using this distance, we estimate that 266,257 km2 of 1973 forest cover has been logged. With 389,566 km2 (52.8%) of the island remaining forested, of which 209,649 km2 remains intact. There is still hope for biodiversity conservation in Borneo. Protecting logged forests from fire and conversion to plantations is an urgent priority for reducing rates of deforestation in Borneo.  相似文献   
136.
DNA methylation can play important roles in the regulation of transposable elements and genes. A collection of mutant alleles for 11 maize (Zea mays) genes predicted to play roles in controlling DNA methylation were isolated through forward- or reverse-genetic approaches. Low-coverage whole-genome bisulfite sequencing and high-coverage sequence-capture bisulfite sequencing were applied to mutant lines to determine context- and locus-specific effects of these mutations on DNA methylation profiles. Plants containing mutant alleles for components of the RNA-directed DNA methylation pathway exhibit loss of CHH methylation at many loci as well as CG and CHG methylation at a small number of loci. Plants containing loss-of-function alleles for chromomethylase (CMT) genes exhibit strong genome-wide reductions in CHG methylation and some locus-specific loss of CHH methylation. In an attempt to identify stocks with stronger reductions in DNA methylation levels than provided by single gene mutations, we performed crosses to create double mutants for the maize CMT3 orthologs, Zmet2 and Zmet5, and for the maize DDM1 orthologs, Chr101 and Chr106. While loss-of-function alleles are viable as single gene mutants, the double mutants were not recovered, suggesting that severe perturbations of the maize methylome may have stronger deleterious phenotypic effects than in Arabidopsis thaliana.  相似文献   
137.
138.
139.
We have observed previously that the reactions catalyzed by hypoxanthine/guanine phosphoribosyltransferase (HGPRTase) are activated by Mg(II), Mn(II), and Co(II), and we have defined the mechanism by which these activations proceed [Biochemistry 22, 3419-3424 (1983)]. A more extensive survey of the kinds of metal ions that will activate the HGPRTase catalysis now has been completed through the use of an HPLC assay procedure. Although Fe(II) and Ca(II) are unable to activate this reaction, a significant activation was achieved with the addition of spectroscopically pure Zn(II) to the assay solution. In addition some IMP synthesis resulted from the addition of Ni(II) to the assay mixture. Both the Zn(II) and Ni(II) kinetic effects on HGPRTase over a limited metal ion concentration range have been analyzed through the use of curve-fitting exercises. These results, in addition to the similar pH profiles for the activations by Mg(II), Mn(II), Co(II), and Zn(II), suggest that all of these metal ions activate the HGPRTase-catalyzed synthesis of IMP by way of the same mechanism [model II as defined by London and Steck, Biochemistry 8, 1767-1779 (1969)], during which two divalent ions bind to the HGPRTase active site per molecule of PRibPP.  相似文献   
140.
A 12.2-kilobase (kb) BclI fragment containing the lysostaphin endopeptidase gene was cloned from Staphylococcus simulans biovar staphylolyticus into Escherichia coli. The gene was expressed in E. coli and the gene product apparently was secreted into the periplasmic space. The gene was localized to a 3.3-kb region of the cloned fragment and this region was shown to contain a staphylococcal promoter for the endopeptidase gene. By hybridization analysis, the endopeptidase gene was shown to reside on the largest of five plasmids in S. simulans biovar staphylolyticus. No additional copies of this gene were detected in the genome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号