首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   346篇
  免费   36篇
  382篇
  2024年   1篇
  2023年   5篇
  2022年   1篇
  2021年   8篇
  2020年   4篇
  2019年   4篇
  2018年   7篇
  2017年   2篇
  2016年   6篇
  2015年   7篇
  2014年   15篇
  2013年   23篇
  2012年   26篇
  2011年   28篇
  2010年   19篇
  2009年   13篇
  2008年   16篇
  2007年   23篇
  2006年   23篇
  2005年   27篇
  2004年   33篇
  2003年   18篇
  2002年   19篇
  2001年   4篇
  2000年   5篇
  1999年   7篇
  1998年   1篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   5篇
  1991年   1篇
  1990年   3篇
  1989年   4篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
  1965年   1篇
排序方式: 共有382条查询结果,搜索用时 10 毫秒
111.

Key message

Reduced leaf longevity, N-fixation, and enhanced hydraulic capacity combined support greater shifts in seasonal photosynthetic capacity of an expansive understory evergreen woody species relative to co-occurring less expansive evergreen species.

Abstract

Physiological functioning typically declines with increased leaf life span. While an evergreen leaf habit is generally associated with reduced leaf N, physiological capacity, and slower growth, most expansive woody species are evergreens and/or N fixers. An evergreen leaf habit enables year-round activity and less investment in carbon and nutrients, while N-fixation enhances photosynthetic capacity. Our objective was to compare anatomy and physiology of three woody evergreens Ilex opaca Aiton (Aquifoliaceae), Kalmia latifolia L. (Ericaceae), and Myrica cerifera (Myricaceae) of varying leaf longevity, N-fixation capability, and known expansive potential in a deciduous forest understory to determine if seasonal physiological performance integrated these factors. We hypothesized that I. opaca (non-expansive) and K. latifolia (moderately expansive), which have longer leaf longevities, would have reduced physiological performance compared to M. cerifera (expansive), which has shorter leaf longevity, and symbiotically fixes atmospheric N. Stomatal conductance to water vapor, photosynthetic and hydraulic capacities, specific leaf area, and leaf %N decreased with increasing leaf life span; however, trends among species were not consistent seasonally. While hydraulic capacity remained constant throughout the year, photosynthetic capacity did not. During the growing season, M. cerifera displayed photosynthetic capacity similar to deciduous species, yet, during the winter, photosynthetic capacity was similar to the slower-growing evergreens. Reduced leaf life span, enhanced hydraulic capacity, and nitrogen fixation support the seasonal shift in photosynthetic capacity observed in M. cerifera. This “hybrid” strategy enables M. cerifera to maximize productivity during months of optimal conditions, thereby promoting rapid growth and expansion in the understory.  相似文献   
112.
The ovarian, or coelomic, fluid that is released with the egg mass of many fishes is increasingly found to play an important role in several biological processes crucial for reproductive success. These include maintenance of oocyte fertility and developmental competence, prolonging of sperm motility, and enhancing sperm swimming speed. Here we examined if and how the proteome of chinook salmon (Oncorhynchus tshawytscha) ovarian fluid varied among females and then sought to examine the composition of this fluid. Ovarian fluid in chinook salmon was analyzed using 1D SDS PAGE and LC-MS/MS tryptic digest screened against Mascot and Sequest databases. We found marked differences in the number and concentrations of proteins in salmon ovarian fluid across different females. A total of 174 proteins were identified in ovarian fluid, 47 of which were represented by six or more peptides, belonging to one of six Gene Ontology pathways. The response to chemical stimulus and response to hypoxia pathways were best represented, accounting for 26 of the 174 proteins. The current data set provides a resource that furthers our understanding of those factors that influence successful egg production and fertilisation in salmonids and other species.  相似文献   
113.
  • 1 Bark beetles (Coleoptera: Curculionidae, Scolytinae) are commonly recognized as important tree mortality agents in coniferous forests of the western U.S.A.
  • 2 High stand density is consistently associated with bark beetle infestations in western coniferous forests, and therefore thinning has long been advocated as a preventive measure to alleviate or reduce the amount of bark beetle‐caused tree mortality.
  • 3 The present study aimed to determine the effectiveness of thinning to reduce stand susceptibility to bark beetle infestations over a 10‐year period in Pinus jeffreyi forests on the Tahoe National Forest, California, U.S.A. Four treatments were replicated three times within 1‐ha square experimental plots. Treatments included thinning from below (i.e. initiating in the smallest diameter classes) to a residual target basal area (cross‐sectional area of trees at 1.37 m in height) of: (i) 18.4 m2/ha (low density thin); (ii) 27.6 m2/ha (medium density thin); (iii) 41.3 m2/ha (high density thin); and (iv) no stand manipulation (untreated control).
  • 4 Throughout the present study, 107 trees died as a result of bark beetle attacks. Of these, 71% (75 trees) were Abies concolor killed by Scolytus ventralis; 20.6% (22 trees) were Pinus ponderosa killed by Dendroctonus ponderosae; 4.7% (five trees) were P. jeffreyi killed by Dendroctonus jeffreyi; 1.8% (two trees) were P. jeffreyi killed by Ips pini; 0.9% (one tree) were P. jeffreyi killed by Orthotomicus (= Ips) latidens; 0.9% (one tree) were P. ponderosa killed by both Dendroctonus brevicomis and D. ponderosae; and 0.9% (one tree) were P. jeffreyi killed by unknown causes.
  • 5 In the low density thin, no pines were killed by bark beetles during the 10‐year period. Significantly fewer trees (per ha/year) were killed in the low density thin than the high density thin or untreated control. No significant treatment effect was observed for the percentage of trees (per year) killed by bark beetles.
  相似文献   
114.
Resistance to thyroid hormone (RTH) syndrome is caused by mutations in THRB gene and is inherited mainly as an autosomal dominant trait with dominant negative effect. Most of up-to-now described RTH cases were heterozygous. We studied a 19-year-old woman presenting severe mental impairment, hyperkinetic behavior, learning disability, hearing loss, tachycardia, goiter, strabismus, nystagmus, and normal stature. The laboratory findings revealed elevated TSH, T3, and T4 serum levels. Her parents were healthy with normal serum level of TSH, fT3, and fT4. Sequence based prediction of a substitution was analyzed by SDM, PolPhen, and SNAP software whereas structural visualizations were performed in UCSF Chimera. We found a novel mutation in THRB gene in position 1216 (G to A transition, codon 311) resulting in novel Glu-311-Lys (p.E311K) substitution, homozygous in proband presenting with severe symptoms of RTH and heterozygous in both of her healthy parents, thus suggesting autosomal recessive mode of inheritance. p.E311K substitution was not found in 50 healthy, unrelated individuals. p.E311K was shown to be deleterious by SDM, PolPhen, and SNAP software. Structural visualizations of mutated protein performed by UCSF Chimera software disclosed a loss of hydrogen bonds between E311, R383, and R429 along with abnormal residue-residue contact between K311 and L377. This is a very rare case of a homozygous mutation in a patient with severe symptoms of RTH and lack of symptoms in both heterozygous parents. Although, computational analyses have provided the evidence that p.E311K substitution may affect THRB function, lack of dominant negative effect typical for THRB mutations could not be explained by structure-based modeling. Further in vitro analysis is required to assess the functional consequences of this substitution.  相似文献   
115.
The clinically used inhibitors tazobactam and sulbactam are effective in the inhibition of activity of class A beta-lactamases, but not for class D beta-lactamases. The two inhibitors exhibit a complex multistep profile for their chemistry of inhibition with class A beta-lactamases. To compare the inhibition profiles for class A and D enzymes, the reactions were investigated within OXA-10 beta-lactamase (a class D enzyme) crystals using a Raman microscope. The favored reaction pathway appears to be distinctly different from that for class A beta-lactamases. In contrast to the case of class A enzymes that favor the formation of a key enamine species, the OXA-10 enzyme forms an alpha,beta-unsaturated acrylate (acid or ester). Quantum mechanical calculations support the likely product as the adduct of Ser115 to the acrylate. Few enamine-like species are formed by sulbactam or tazobactam with this enzyme. Taken together, our results show that the facile conversion of the initial imine, formed upon acylation of the active site Ser67, to the cis- and/or trans-enamine is disfavored. Instead, there is a significant population of the imine that could either experience cross-linking to a second nucleophile (e.g., Ser115) or give rise to the alpha,beta-unsaturated product and permanent inhibition. Alternatively, the imine can undergo hydrolysis to regenerate the catalytically active OXA-10 enzyme. This last process is the dominant one for class D beta-lactamases since the enzyme is not effectively inhibited. In contrast to sulbactam and tazobactam, the reactions between oxacillin or 6alpha-hydroxyisopropylpenicillinate (both substrates) and OXA-10 beta-lactamase appear much less complex. These compounds lead to a single acyl-enzyme species, the presence of which was confirmed by Raman and MALDI-TOF experiments.  相似文献   
116.
117.
In the yeast Saccharomyces cerevisiae, the G protein beta gamma subunits are essential for pheromone signaling. The Galpha subunit Gpa1 can also promote signaling, but the effectors in this pathway are not well characterized. To identify candidate Gpa1 effectors, we expressed the constitutively active Gpa1(Q323L) mutant in each of nearly 5000 gene-deletion strains and measured mating-specific responses. Our analysis reveals a requirement for both the catalytic (Vps34) and regulatory (Vps15) subunits of the sole phosphatidylinositol 3-kinase in yeast. We demonstrate that Gpa1 is present at endosomes, where it interacts directly with both Vps34 and Vps15 and stimulates increased production of phosphatidylinositol 3-phosphate. Notably, Vps15 binds to GDP-bound Gpa1 and is predicted to have a seven-WD repeat structure similar to that of known G protein beta subunits. These findings reveal two new components of the pheromone signaling pathway. More remarkably, these proteins appear to comprise a preformed effector-G beta subunit assembly and function at the endosome rather than at the plasma membrane.  相似文献   
118.
119.
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号