首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   10篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   7篇
  2015年   6篇
  2014年   6篇
  2013年   8篇
  2012年   21篇
  2011年   20篇
  2010年   9篇
  2009年   5篇
  2008年   14篇
  2007年   8篇
  2006年   13篇
  2005年   6篇
  2004年   10篇
  2003年   12篇
  2002年   5篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1992年   2篇
排序方式: 共有172条查询结果,搜索用时 15 毫秒
41.
The aim of this study was to compare activities of commercial lipases in synthesis of various esters in solvent-free system and in isooctane. Moreover, the effect of substrate polarity (expressed as log P) on solvent-free synthesis was investigated. The decrease of yields of esters of butanoic acid in absence of organic solvent was observed, while similarly high yields were noticed in synthesis of esters of octanoic acid in both systems (solvent-free and organic solvent). The kinetic analysis has shown that ester synthesis can be described with Ping-pong bi-bi kinetics. In a case of esterification of butanoic acid in solvent-free system additional term, which represents enzyme inactivation by acid substrate, must be included. It was found out that log P of initial substrate mixture was in linear correlation with kcat of ester synthesis, while final yields depend only on type of acid substrate. Each of the examined lipases showed similar properties, although immobilized lipase from Rhizomucor miehei was slightly more resistant to harmful influence of butanoic acid. Finally, it was also shown that detrimental influence of butanoic acid could be circumvented by two-step addition of acid substrate in reaction catalyzed with immobilized lipase from R. miehei.  相似文献   
42.
A set of 16 previously synthesized aryl-aminopyridine and aryl-aminoquinoline derivatives have been evaluated for cytotoxic activity against three cancer cell lines (human cervical cancer-HeLa; human chronic myeloid leukemia-K562; human melanoma-Fem-x) and two types of normal peripheral blood mononuclear cells, with and without phytohemaglutinin (PBMC-PHA; PBMC+PHA). Twelve of the studied compounds showed moderate cytotoxicity, with selectivity against K562 but not the remaining two cancer cell lines. Four compounds were not active in cytotoxicity assays, presumably due to high predicted lipophilicity and low solubility. To rationalize the observed cytotoxic effects, structure-based virtual screening was carried out against a pool of potential targets constructed using the inverse docking program Tarfisdock and bibliographical references. The putative targets were identified on the basis of the best correlation between docking scores and in vitro cytotoxicity. It is proposed that the mechanism of action of the studied aminopyridines involves the disruption of signaling pathways and cancer cell cycle through the inhibition of cyclin-dependent kinases and several tyrosine kinases, namely Bcr-Abl kinase and KIT receptor kinase. The obtained results can guide further structural modifications of the studied compounds aimed at developing selective agents targeting proteins involved in cancer cell survival and proliferation.  相似文献   
43.
Bovine papillomavirus type 1 (BPV-1) is an economically important virus that induces tumourigenic pathologies in horses and cows. Given that the BPV-1 L1 major coat protein can self-assemble into highly immunogenic higher-order structures, we transiently expressed it in Nicotiana benthamiana as a prelude to producing a candidate vaccine. It was found that plant codon optimization of L1 gave higher levels of expression than its non-optimized counterpart. Following protein extraction, we obtained high yields (183 mg/kg fresh weight leaf tissue) of relatively pure L1, which had self-assembled into virus-like particles (VLPs). We found that these VLPs elicited a highly specific and strong immune response, and therefore they may have utility as a potential vaccine. This is the first report demonstrating the viable production of a candidate BPV vaccine protein in plants.  相似文献   
44.
A 54 year old man sustained a third degree open fracture at the distal part of the right humerus with massive soft tissue defect involving most of the upper arm. The radial and median nerves were completely bared and exposed by 6 cm for radial and 3 cm for median nerve. The nerves were in continuity, but there was complete rupture of surrounding muscles: biceps, triceps and brachialis. The fracture was stabilized by external fixation method--reinforced by wires. Preoperative and postoperative sensorimotor status of the right hand was good. One year later sensory and motoric status of right hand showed no deficiencies, but flexion and extension in elbow were limited to 100 and 180 degrees respectively. Pronosupination was restricted. This case report is consistent with results of biomechanical studies in vitro confirming high tolerance of radial and median nerve to stretching injury.  相似文献   
45.
The aquaglyceroporin of Plasmodium falciparum (PfAQP) is a bi-functional channel with permeability for water and solutes. Its functions supposedly are in osmotic protection of parasites and in facilitation of glycerol permeation for glycerolipid biosynthesis. Here, we show PfAQP permeability for the glycolysis-related metabolites methylglyoxal, a cytotoxic byproduct, and dihydroxyacetone, a ketotriose. AQP3, the red cell aquaglyceroporin, also passed dihydroxacetone but excluded methylglyoxal. Proliferation of malaria parasites was inhibited by methylglyoxal with an IC50 around 200 μM. Surprisingly, also dihydroxyacetone, which is an energy source in human cells, was antiproliferative in chloroquine-sensitive and resistant strains with an IC50 around 3 mM. We expressed P. falciparum glyceraldehyde 3-phosphate dehydrogenase (PfGAPDH) to examine whether it is inhibited by either carbonyl compound. Methylglyoxal did not affect PfGAPDH on incubation with 2.5 mM for 20 h. Treatment with 2.5 mM dihydroxyacetone, however, abolished PfGAPDH activity within 6 h. Aquaglyceroporin permeability for glycolytic metabolites may thus be of physiological significance.  相似文献   
46.
Mounting evidence underscores the importance of protein-protein interactions in the functional regulation of drug-metabolizing P450s, but few studies have been conducted in membrane environments, and none have examined P450s catalyzing sex steroid synthesis. Here we report specific protein-protein interactions for full-length, human, wild type steroidogenic cytochrome P450 (P450, CYP) enzymes: 17α-hydroxylase/17,20-lyase (P450c17, CYP17) and aromatase (P450arom, CYP19), as well as their electron donor NADPH-cytochrome P450 oxidoreductase (CPR). Fluorescence resonance energy transfer (FRET)3 in live cells, coupled with quartz crystal microbalance (QCM), and atomic force microscopy (AFM) studies on phosphatidyl choline ± cholesterol (mammalian) biomimetic membranes were used to investigate steroidogenic P450 interactions. The FRET results in living cells demonstrated that both P450c17 and P450arom homodimerize but do not heterodimerize, although they each heterodimerize with CPR. The lack of heteroassociation between P450c17 and P450arom was confirmed by QCM, wherein neither enzyme bound a membrane saturated with the other. In contrast, the CPR bound readily to either P450c17- or P450arom-saturated surfaces. Interestingly, N-terminally modified P450arom was stably incorporated and gave similar results to the wild type, although saturation was achieved with much less protein, suggesting that the putative transmembrane domain is not required for membrane association but for orientation. In fact, all of the proteins were remarkably stable in the membrane, such that high resolution AFM images were obtained, further supporting the formation of P450c17, P450arom, and CPR homodimers and oligomers in lipid bilayers. This unique combination of in vivo and in vitro studies has provided strong evidence for homodimerization and perhaps some higher order interactions for both P450c17 and P450arom.  相似文献   
47.
Oxidative modification of Trigonopsis variabilisd-amino acid oxidase in vivo is traceable as the conversion of Cys108 into a stable cysteine sulfinic acid, causing substantial loss of activity and thermostability of the enzyme. To simulate native and modified oxidase each as a microheterogeneity-resistant entity, we replaced Cys108 individually by a serine (C108S) and an aspartate (C108D), and characterized the purified variants with regard to their biochemical and kinetic properties, thermostability, and reactivity towards oxidation by hypochlorite. Tandem MS analysis of tryptic peptides derived from a hypochlorite-treated inactive preparation of recombinant wild-type oxidase showed that Cys108 was converted into cysteine sulfonic acid, mimicking the oxidative modification of native enzyme as isolated. Colorimetric titration of protein thiol groups revealed that in the presence of ammonium benzoate (0.12 mM), the two muteins were not oxidized at cysteines whereas in the wild-type enzyme, one thiol group was derivatized. Each site-directed replacement caused a conformational change in d-amino acid oxidase, detected with an assortment of probes, and resulted in a turnover number for the O2-dependent reaction with D-Met which in comparison with the corresponding wild-type value was decreased two- and threefold for C108S and C108D, respectively. Kinetic analysis of thermal denaturation at 50 °C was used to measure the relative contributions of partial unfolding and cofactor dissociation to the overall inactivation rate in each of the three enzymes. Unlike wild-type, C108S and C108D released the cofactor in a quasi-irreversible manner and were therefore not stabilized by external FAD against loss of activity. The results support a role of the anionic side chain of Cys108 in the fine-tuning of activity and stability of d-amino acid oxidase, explaining why C108S was a surprisingly poor mimic of the native enzyme.  相似文献   
48.
49.
An insertional deoD mutant of Streptococcus thermophilus strain SFi39 had a reduced growth rate at 20 degrees C and an enhanced survival capacity to heat shock compared to the wild type, indicating that the deoD product is involved in temperature shock adaptation. We report evidence that ppGpp is implicated in this dual response.  相似文献   
50.
One of the primary sources of enzyme instability is protein oxidative modification triggering activity loss or denaturation. We show here that the side chain of Cys108 is the main site undergoing stress-induced oxidation in Trigonopsis variabilis d-amino acid oxidase, a flavoenzyme employed industrially for the conversion of cephalosporin C. High-resolution anion-exchange chromatography was used to separate the reduced and oxidized protein forms, which constitute, in a molar ratio of about 3:1, the active biocatalyst isolated from the yeast. Comparative analysis of their tryptic peptides by electrospray tandem mass spectrometry allowed unequivocal assignment of the modification as the oxidation of Cys108 into cysteine sulfinic acid. Cys108 is likely located on a surface-exposed protein region within the flavin adenine dinucleotide (FAD) binding domain, but remote from the active center. Its oxidized side chain was remarkably stable in solution, thus enabling the relative biochemical characterization of native and modified enzyme forms. The oxidation of Cys108 causes a global conformational response that affects the protein environment of the FAD cofactor. In comparison with the native enzyme, it results in a fourfold-decreased specific activity, reflecting a catalytic efficiency for reduction of dioxygen lowered by about the same factor, and a markedly decreased propensity to aggregate under conditions of thermal denaturation. These results open up unprecedented routes for stabilization of the oxidase and underscore the possible significance of protein chemical heterogeneity for biocatalyst function and stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号