首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   15篇
  138篇
  2019年   2篇
  2018年   1篇
  2017年   5篇
  2016年   7篇
  2015年   11篇
  2014年   10篇
  2013年   6篇
  2012年   8篇
  2011年   4篇
  2010年   6篇
  2009年   3篇
  2008年   1篇
  2007年   5篇
  2006年   4篇
  2005年   7篇
  2004年   1篇
  2002年   1篇
  2001年   5篇
  2000年   4篇
  1999年   5篇
  1998年   6篇
  1997年   3篇
  1996年   6篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1978年   2篇
  1977年   3篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1969年   1篇
  1965年   1篇
  1934年   1篇
排序方式: 共有138条查询结果,搜索用时 15 毫秒
101.
Carbamoylphosphate synthetase (CPS) catalyzes the first committed step in pyrimidine biosynthesis, arginine biosynthesis, or the urea cycle. Organisms may contain either one generalized or two specific CPS enzymes, and these enzymes may be heterodimeric (encoded by linked or unlinked genes), monomeric, or part of a multifunctional protein. In order to help elucidate the evolution of CPS, we have performed a comprehensive phylogenetic analysis using the 21 available complete CPS sequences, including a sequence from Sulfolobus solfataricus P2 which we report in this paper. This is the first report of a complete CPS gene sequence from an archaeon, and sequence analysis suggests that it encodes an enzyme similar to heterodimeric CPSII. We confirm that internal similarity within the synthetase domain of CPS is the result of an ancient gene duplication that preceded the divergence of the Bacteria, Archaea, and Eukarya, and use this internal duplication in phylogenetic tree construction to root the tree of life. Our analysis indicates with high confidence that this archaeal sequence is more closely related to those of Eukarya than to those of Bacteria. In addition to this ancient duplication which created the synthetase domain, our phylogenetic analysis reveals a complex history of further gene duplications, fusions, and other events which have played an integral part in the evolution of CPS.   相似文献   
102.
Microbes that are beneficial to plants are used to enhance the crop growth, yield and are alternatives to chemical fertilizers. Trichoderma and Bacillus are the predominant plant growth-promoting fungi and bacteria. The objective of this study was select, characterize, and evaluate isolates of Trichoderma spp. and Bacillus spp. native from the northern region of Sinaloa, Mexico, and assess their effect on growth promotion in maize (Zea mays L.). In greenhouse conditions, four Trichoderma isolates and twenty Bacillus isolates, as well as two controls, were tested in a completely randomized design with three replicates. We selected the two best strains of Trichoderma and Bacillus: TB = Trichoderma asperellum, TF = Trichoderma virens, B14 = Bacillus cereus sensu lato and B17 = Bacillus cereus, which were evaluated in the field in a completely randomized blocks in factorial arrangement design with three replicates applying different rates of nitrogen fertilizer (0, 150 kg N/ha, and 300 kg N/ha). Treatments 5 (B17 = B. cereus) and 11 (TF = T. virens) both fertilized with 150 kg N/ha showed similar yields and they did not reveal significant differences from the treatments fertilized with 300 kg N/ha. This indicated that treatment 5 (B17= B. cereus with 150 kg N/ha) and treatment 11 (TF= T. virens with 150 kg N/ha) were efficient as growth promoters, by not showing significant differences in root volume and dry weight of foliage. The results indicated a reduction of 50% in the rate of nitrogen to fertilizer required for maize (Zea mays L.) crops. These microorganisms Trichoderma and Bacillus could be an alternative to reduce the use of chemical fertilizers in maize.  相似文献   
103.
The scarcity of water in arid and semiarid regions of the world is a problem that every day increases by climate change. The subsurface drip irrigation (SDI) and changes in population density of plants are alternatives that can be used to make a sustainable use of water. Therefore, the objectives of this study were to determine the combination that allows for an increased corn performance and efficient use of water without losing the quality of forage. Three different irrigation levels were applied through a system of a SDI at three different densities of forage maize plants in an arid region. The results demonstrated that by applying different levels of water, either enough or lack of soil moisture is created, which is directly reflected in crop yield, and its determining variables such as green forage and dry matter yield, and nutritional quality. The irrigation level to a 100% of potential evapotranspiration (PET), at a density of 80000 plants/ha, increased yield of green forage to 57664 kg/ha; crude protein was 8.59%, while the rest of the quality parameters decreased. This study allowed to conclude that the irrigation level was the major factor in the response of the crop.  相似文献   
104.
Proteins are one of the major metabolites in biomass from microalgae that constitute the diet of marine organisms grown in aquaculture, and are essential for their growth. The quantity of this component is influenced by nutrients, temperature and light intensity, among others. We examined the growth, biomass production and protein of Chaetoceros muelleri with two sources of nitrogen (nitrate and urea) at three concentrations, using the medium f/2 (0.88 mol/L) (nitrates) as control. The treatments were the medium 2f (3.53 mol/L) and 4f (7.05 mol/L) with NO3-, and the medium f/2 (0.88 mol/L), 2f (3.53mol/L) and 4f (7.05 mol/L) with urea. In general, the productive parameters were greater using urea than nitrate in the media. Higher cell concentrations (2.83 x 106 cell/mL), average and cumulative growth rates (1.50 div/day and 6.01 divisions), dry weight (0.0044 g/L), and proportion of proteins (23.74%) were found when urea was used as the N source. However, most of the bands on the electrophoretic profile were present in the mediums with NO3- (~6.5 to 90 kDa).  相似文献   
105.

Background

Postweaning diarrhoea (PWD) in pigs is usually the main infectious problem of large-scale farms and is responsible for significant losses worldwide. The disease is caused mainly by enterotoxigenic E. coli (ETEC) and Shiga-toxin producing E. coli (STEC). In this study a total of 101 E. coli isolated from pigs with PWD in Slovakia were characterized using phenotypic and genotypic methods.

Results

These 101 isolates belonged to 40 O:H serotypes. However, 57% of the isolates belonged to only six serotypes (O9:H51, O147:H-, O149:H10, O163:H-, ONT:H-, and ONT:H4), including two new serotypes (O163:H- and ONT:H4) not previously found among porcine ETEC and STEC isolated in other countries. Genes for EAST1, STb, STa, LT and Stx2e toxins were identified in 64%, 46%, 26%, 20%, and 5% of isolates, respectively. PCR showed that 35% of isolates carried genes for F18 colonization factor, and further analyzed by restriction endonuclease revealed that all of them were F18ac. Genes for F4 (K88), F6 (P987), F17, F5 (K99), F41, and intimin (eae gene) adhesins were detected in 19 %, 5%, 3%, 0.9%, 0.9%, and 0.9% of the isolates, respectively. The study of genetic diversity, carried out by PFGE of 46 representative ETEC and STEC isolates, revealed 36 distinct restriction profiles clustered in eight groups. Isolates of the same serotype were placed together in the dendrogram, but high degree of polymorphism among certain serotypes was detected.

Conclusion

Seropathotype O149:H10 LT/STb/EAST1/F4 (14 isolates) was the most commonly detected followed by O163:H- EAST1/F18 (six isolates), and ONT:H4 STa/STb/Stx2e/F18 (five isolates). Interestingly, this study shows that two new serotypes (O163:H- and ONT:H4) have emerged as pig pathogens in Slovakia. Furthermore, our results show that there is a high genetic variation mainly among ETEC of O149:H10 serotype.  相似文献   
106.
The segregation of laboratory maintained male and larval Myrmecia gulosa from workers resulted in increased levels of culturable microbiota. After 29 days, microbial levels recovered from segregated males and larvae were 27 and 126 times greater than from males and larvae not segregated from workers. These findings are consistent with the hypothesis that metapleural gland secretions, absent in larvae and males, are transferred from workers to larvae, and males contribute to the inhibition of cuticular microbiota.  相似文献   
107.
Genera of Eutheiini are reviewed and Eutheimorphus is removed from this tribe of ant‐like stone beetles (Scydmaeninae) and transferred to Cephenniini. A monogeneric Marcepaniini trib.n. is described to accommodate Marcepania gen.n. from Malaysia, with five species: M. semengohensis sp.n. (the type species of Marcepania), M. tuberculata sp.n. , M. seramaensis sp.n. , M. minutissima sp.n. and M. elongata sp.n. A phylogenetic analysis of all genera of Cephenniini, Eutheiini and Marcepaniini based on adult morphological characters resulted in recovering a well‐supported monophyletic clade Eutheiini + (Marcepaniini + Cephenniini) and these tribes are included in Cephenniitae stat.n. (Eutheiini and Cephenniini are therefore removed from Scydmaenitae). Only a weak support for monophyly of Eutheiini was found, but morphological characters allow for maintaining this presumably relic group as a separate tribe. Previously proposed monophyletic groups within Cephenniini were recovered as such, but after inclusion of Eutheimorphus, a sister taxon to the ‘Cephennomicrus group’, the latter lineage gained weak statistical support. The evolutionary history of Cephenniitae is discussed, with focus on known northern hemisphere fossils classified in Scydmaenitae and Hapsomelitae, but possibly closely allied to Cephenniitae. Establishing the supertribe Cephenniitae is the first step toward a profound reclassification of Scydmaeninae on a robust phylogenetic basis. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:B0E1B12D-9587-4C4F-A908-A12A0C424A8C .  相似文献   
108.
A new extinct species of the ant‐like stone beetle supertribe Mastigitae, Euroleptochromus sabathi gen. & sp.n. is described from Eocene Baltic amber. A phylogenetic analysis of Clidicini, with representatives of Leptomastacini and Mastigini as out‐group taxa, provided strong support for a sister‐group relationship between the Neotropical Leptochromus and the new genus. The monophyly of Clidicini is questioned because of an alternative placement of Nearctic Papusus as a sister taxon to Leptomastacini + [Clidicus + (Palaeoleptochromus + (Euroleptochromus + Leptochromus))]. A dispersal‐vicariance analysis provided three alternative scenarios for the evolution of Mastigitae; with Laurasia as the ancestral area of the supertribe, major branching events occurring within either Eurasia or Laurentia and two trans‐Beringia dispersals in Late Cretaceous and Eocene. Euroleptochromus, Palaeoleptochromus and Leptochromus share highly derived structures on postgenae and maxillary palps, probably as part of a specialised feeding or prey capture mechanism. The formation of these modifications in Clidicini is demonstrated to involve a process (traced back to the Campanian, 79 Ma) of elongation and narrowing of maxillary palps and forming a cuticular setal projection from a broadened insertion site of sensory setae.  相似文献   
109.
110.

Background

Microorganisms that are exposed to pollutants in the environment, such as metals/metalloids, have a remarkable ability to fight the metal stress by various mechanisms. These metal-microbe interactions have already found an important role in biotechnological applications. It is only recently that microorganisms have been explored as potential biofactories for synthesis of metal/metalloid nanoparticles. Biosynthesis of selenium (Se0) nanospheres in aerobic conditions by a bacterial strain isolated from the coalmine soil is reported in the present study.

Results

The strain CM100B, identified as Bacillus cereus by morphological, biochemical and 16S rRNA gene sequencing [GenBank:GU551935.1] was studied for its ability to generate selenium nanoparticles (SNs) by transformation of toxic selenite (SeO3 2-) anions into red elemental selenium (Se0) under aerobic conditions. Also, the ability of the strain to tolerate high levels of toxic selenite ions was studied by challenging the microbe with different concentrations of sodium selenite (0.5 mM-10 mM). ESEM, AFM and SEM studies revealed the spherical Se0 nanospheres adhering to bacterial biomass as well as present as free particles. The TEM microscopy showed the accumulation of spherical nanostructures as intracellular and extracellular deposits. The deposits were identified as element selenium by EDX analysis. This is also indicated by the red coloration of the culture broth that starts within 2-3 h of exposure to selenite oxyions. Selenium nanoparticles (SNs) were further characterized by UV-Visible spectroscopy, TEM and zeta potential measurement. The size of nanospheres was in the range of 150-200 nm with high negative charge of -46.86 mV.

Conclusions

This bacterial isolate has the potential to be used as a bionanofactory for the synthesis of stable, nearly monodisperse Se0 nanoparticles as well as for detoxification of the toxic selenite anions in the environment. A hypothetical mechanism for the biogenesis of selenium nanoparticles (SNs) involving membrane associated reductase enzyme(s) that reduces selenite (SeO3 2-) to Se0 through electron shuttle enzymatic metal reduction process has been proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号