全文获取类型
收费全文 | 138篇 |
免费 | 10篇 |
专业分类
148篇 |
出版年
2024年 | 1篇 |
2022年 | 2篇 |
2021年 | 2篇 |
2020年 | 1篇 |
2019年 | 4篇 |
2018年 | 2篇 |
2017年 | 1篇 |
2016年 | 1篇 |
2015年 | 3篇 |
2014年 | 10篇 |
2013年 | 6篇 |
2012年 | 14篇 |
2011年 | 11篇 |
2010年 | 3篇 |
2009年 | 7篇 |
2008年 | 11篇 |
2007年 | 16篇 |
2006年 | 13篇 |
2005年 | 7篇 |
2004年 | 8篇 |
2003年 | 5篇 |
2002年 | 1篇 |
2000年 | 3篇 |
1999年 | 4篇 |
1997年 | 2篇 |
1996年 | 2篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1984年 | 2篇 |
1982年 | 2篇 |
1978年 | 2篇 |
排序方式: 共有148条查询结果,搜索用时 0 毫秒
21.
The positioning and dynamics of organelles depend on membrane-cytoskeleton interactions. Mitochondria relocate along microtubules (MT), but it is not clear whether MT have direct effects on mitochondrial function. Using two-photon microscopy and the mitochondrial fluorescent dyes rhodamine 123 and Rhod-2, we showed that Taxol and nocodazole, which correspondingly stabilize and disrupt MT, decreased potential and Ca(2+) in the mitochondria of brain stem pre-Botzinger complex neurons. Without changing basal cytoplasmic Ca(2+) ([Ca(2+)](i)), Taxol promoted the generation of [Ca(2+)](i) spikes in dendrites. These spikes were abolished after blockade of Ca(2+) influx and after depletion of internal Ca(2+) stores, indicating the involvement of Ca(2+)-induced Ca(2+) release. Nocodazole decreased mitochondrial potential and [Ca(2+)](m) and produced a long lasting increase in [Ca(2+)](i). MT-acting drugs depolarized single immobilized mitochondria and released previously stored Ca(2+). All of these effects were inhibited by pretreatment with blockers of mitochondrial permeability transition pore (mPTP), cyclosporin A, and 2-aminoethoxydiphenyl borate. Induction of mPTP by Taxol and nocodazole was confirmed by using a calcein/Co(2+) imaging technique. Electron and optical microscopy revealed tubulin bound to mitochondria. Mitochondria, MT, and endoplasmic reticulum (ER) showed strong co-localization, the degree of which decreased after MT were disrupted. We propose that changes in the structure of MT by Taxol and nocodazole promote the induction of mPTP. Subsequent Ca(2+) efflux stimulates the Ca(2+) release from the ER that drives spontaneous [Ca(2+)](i) transients. Thus, close positioning of mitochondria to the ER as determined by MT can be essential for the local [Ca](i) signaling in neurons. 相似文献
22.
Vukić M Walters BC Radić A Jurjević I Marasanov SM Rozanković M Jednacak H 《Collegium antropologicum》2011,35(Z1):275-279
The aim of this study is to evaluate the efficacy of hydroxyapatite grafts in multilevel cervical interbody fusion during the one year follow-up. A total of 86 patients with degenerative cervical disc disease underwent all together 224 cervical interbody fusion procedures in which either Smith-Robinson or Cloward type hydroxyapatite grafts were used. The surgeries included radiculopathy in 38 cases, myelopathy in 20 cases and myeloradicuopathy in 28 patients. In 65 out of 86 patients, fusion was followed by an anterior instrumentation (plating). Postoperatively, patients were followed for a mean of 15.64 (range 11-23.3) months. All patients underwent radiography to evaluate fusion and the axis curvature. Excellent clinical results (86%), described as a complete or partial relief of symptoms with full return to preop activity, were obtained in patients with radiculopathy. There were 5 grafts mobilizations and one graft fracture. Two grafts extruded in non-instrumented patients and required repeated surgery. There were other three reoperations due to the hardware problems. One year fusion rate was obtained at 86% for two-level surgery, 80.1% for three-level surgery and 74% for four-level surgery. The mean (SD) hospital stay was 3.8 (0.7) days. A hydroxyapatite cheramic can be a very effective synthetic material for multilevel cervical interbody fusion. It is characterized by a high fusion rate and a small percentage of graft-related complications, especially when fusion procedure is followed by plating. 相似文献
23.
A protein dynamics study of photosystem II: the effects of protein conformation on reaction center function 总被引:2,自引:0,他引:2 下载免费PDF全文
Molecular dynamics simulations have been performed to study photosystem II structure and function. Structural information obtained from simulations was combined with ab initio computations of chromophore excited states. In contrast to calculations based on the x-ray structure, the molecular-dynamics-based calculations accurately predicted the experimental absorbance spectrum. In addition, our calculations correctly assigned the energy levels of reaction-center (RC) chromophores, as well as the lowest-energy antenna chlorophyll. The primary and secondary quinone electron acceptors, QA and QB, exhibited independent changes in position over the duration of the simulation. QB fluctuated between two binding sites similar to the proximal and distal sites previously observed in light- and dark-adapted RC from purple bacteria. Kinetic models were used to characterize the relative influence of chromophore geometry, site energies, and electron transport rates on RC efficiency. The fluctuating energy levels of antenna chromophores had a larger impact on quantum yield than did their relative positions. Variations in electron transport rates had the most significant effect and were sufficient to explain the experimentally observed multi-component decay of excitation in photosystem II. The implications of our results are discussed in the context of competing evolutionary selection pressures for RC structure and function. 相似文献
24.
Henn Ojaveer Andres Jaanus Brian R. MacKenzie Georg Martin Sergej Olenin Teresa Radziejewska Irena Telesh Michael L. Zettler Anastasija Zaiko 《PloS one》2010,5(9)
The brackish Baltic Sea hosts species of various origins and environmental tolerances. These immigrated to the sea 10,000 to 15,000 years ago or have been introduced to the area over the relatively recent history of the system. The Baltic Sea has only one known endemic species. While information on some abiotic parameters extends back as long as five centuries and first quantitative snapshot data on biota (on exploited fish populations) originate generally from the same time, international coordination of research began in the early twentieth century. Continuous, annual Baltic Sea-wide long-term datasets on several organism groups (plankton, benthos, fish) are generally available since the mid-1950s. Based on a variety of available data sources (published papers, reports, grey literature, unpublished data), the Baltic Sea, incl. Kattegat, hosts altogether at least 6,065 species, including at least 1,700 phytoplankton, 442 phytobenthos, at least 1,199 zooplankton, at least 569 meiozoobenthos, 1,476 macrozoobenthos, at least 380 vertebrate parasites, about 200 fish, 3 seal, and 83 bird species. In general, but not in all organism groups, high sub-regional total species richness is associated with elevated salinity. Although in comparison with fully marine areas the Baltic Sea supports fewer species, several facets of the system''s diversity remain underexplored to this day, such as micro-organisms, foraminiferans, meiobenthos and parasites. In the future, climate change and its interactions with multiple anthropogenic forcings are likely to have major impacts on the Baltic biodiversity. 相似文献
25.
26.
27.
Pirkmajer S Filipovic D Mars T Mis K Grubic Z 《American journal of physiology. Regulatory, integrative and comparative physiology》2010,299(6):R1693-R1700
Injury of skeletal muscle is followed by muscle regeneration in which new muscle tissue is formed from the proliferating mononuclear myoblasts, and by systemic response to stress that exposes proliferating myoblasts to increased glucocorticoid (GC) concentration. Because of its various causes, hypoxia is a frequent condition affecting skeletal muscle, and therefore both processes, which importantly determine the outcome of the injury, often proceed under hypoxic conditions. It is therefore important to identify and characterize in proliferating human myoblasts: 1) response to hypoxia which is generally organized by hypoxia-inducible factor-1α (HIF-1α); 2) response to GCs which is mediated through the isoforms of glucocorticoid receptors (GRs) and 11β-hydroxysteroid dehydrogenases (11β-HSDs), and 3) the response to GCs under the hypoxic conditions and the influence of this combination on the factors controlling myoblast proliferation. Using real-time PCR, Western blotting, and HIF-1α small-interfering RNA silencing, we demonstrated that cultured human myoblasts possess both, the HIF-1α-based response to hypoxia, and the GC response system composed of GRα and types 1 and 2 11β-HSDs. However, using combined dexamethasone and hypoxia treatments, we demonstrated that these two systems operate practically without mutual interactions. A seemingly surprising separation of the two systems that both organize response to hypoxic stress can be explained on the evolutionary basis: the phylogenetically older HIF-1α response is a protection at the cellular level, whereas the GC stress response protects the organism as a whole. This necessitates actions, like downregulation of IL-6 secretion and vascular endothelial growth factor, that might not be of direct benefit for the affected myoblasts. 相似文献
28.
Sergej Tomi? Jelena ?oki? Sa?a Vasiliji? Nina Ogrinc Rebeka Rudolf Primo? Pelicon Dragana Vu?evi? Petar Milosavljevi? Sr?a Jankovi? Ivan An?el Jelena Rajkovi? Marjan Slak Rupnik Bernd Friedrich Miodrag ?oli? 《PloS one》2014,9(5)
Gold nanoparticles (GNPs) are claimed as outstanding biomedical tools for cancer diagnostics and photo-thermal therapy, but without enough evidence on their potentially adverse immunological effects. Using a model of human dendritic cells (DCs), we showed that 10 nm- and 50 nm-sized GNPs (GNP10 and GNP50, respectively) were internalized predominantly via dynamin-dependent mechanisms, and they both impaired LPS-induced maturation and allostimulatory capacity of DCs, although the effect of GNP10 was more prominent. However, GNP10 inhibited LPS-induced production of IL-12p70 by DCs, and potentiated their Th2 polarization capacity, while GNP50 promoted Th17 polarization. Such effects of GNP10 correlated with a stronger inhibition of LPS-induced changes in Ca2+ oscillations, their higher number per DC, and more frequent extra-endosomal localization, as judged by live-cell imaging, proton, and electron microscopy, respectively. Even when released from heat-killed necrotic HEp-2 cells, GNP10 inhibited the necrotic tumor cell-induced maturation and functions of DCs, potentiated their Th2/Th17 polarization capacity, and thus, impaired the DCs'' capacity to induce T cell-mediated anti-tumor cytotoxicity in vitro. Therefore, GNP10 could potentially induce more adverse DC-mediated immunological effects, compared to GNP50. 相似文献
29.
Since their discovery, fermentation processes have gone along not only with the industrial beverages production and breweries, but since the times of Alexander Fleming, they have become a crucial part of the health care due to antibiotics production. However, complicated dynamics and strong nonlinearities cause that the production with the use of linear control methods achieves only suboptimal yields. From the variety of nonlinear approaches, gradient method has proved the ability to handle these issues—nevertheless, its potential in the field of fermentation processes has not been revealed completely. This paper describes constant vaporization control strategy based on a double-input optimization approach with a successful reduction to a single-input optimization task. To accomplish this, model structure used in the previous work is modified so that it corresponds with the new optimization strategy. Furthermore, choice of search step is explored and various alternatives are evaluated and compared. 相似文献
30.
Milovic S Steinecker-Frohnwieser B Schreibmayer W Weigl LG 《The Journal of biological chemistry》2004,279(33):34240-34249
G protein-activated K(+) channels (GIRKs or Kir3.x) are targets for the volatile anesthetic, halothane. When coexpressed with the m(2) acetylcholine (ACh) receptor in Xenopus oocytes, agonist-activated GIRK1(F137S)- and GIRK2-mediated currents are inhibited by halothane, whereas in the absence of ACh, high concentrations of halothane induce GIRK1(F137S)-mediated currents. To elucidate the molecular mechanism of halothane action on GIRK currents of different subunit compositions, we constructed deletion mutants of GIRK1(F137S) (GIRK1(Delta363*)) and GIRK2 (GIRK2(Delta356)) lacking the C-terminal ends, as well as chimeric GIRK channels. Mutated GIRK channels showed normal currents when activated by ACh but exhibited different pharmacological properties toward halothane. GIRK2(Delta356) showed no sensitivity against the inhibitory action of halothane but was activated by halothane in the absence of an agonist. GIRK1(Delta363*) was activated by halothane more efficiently. Currents mediated by chimeric channels were inhibited by anesthetic concentrations that were at least 30-fold lower than those necessary to decrease GIRK2 wild type currents. Glutathione S-transferase pulldown experiments did not show displacement of bound Gbetagamma by halothane, indicating that halothane does not interfere with Gbetagamma binding. Single channel experiments revealed an influence of halothane on the gating of the channels: The agonist-induced currents of GIRK1 and GIRK2, carried mainly by brief openings, were inhibited, whereas higher concentrations of the anesthetic promoted long openings of GIRK1 channels. Because the C terminus is crucial for these effects, an interaction of halothane with the channel seems to be involved in the mechanism of current modulation. 相似文献