首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
  2020年   1篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   3篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  1988年   1篇
排序方式: 共有29条查询结果,搜索用时 22 毫秒
11.
12.
13.
The OsmC-region (osmotically induced protein family) of the two-domain esterase EstO from the psychrotolerant bacterium Pseudoalteromonas arctica has been shown to increase thermolability. In an attempt to test if these properties can be conferred to another enzyme, we genetically fused osmC to the 3′-region of the family 8 xylanase encoding gene xyn8 from P. arctica. The chimeric open reading frame xyn8-OsmC was cloned and the chimeric protein was purified after heterologous expression in Escherichia coli. Xyn8 and Xyn8-OsmC showed cold-adapted properties (more than 60% activity at 0°C) using birchwood xylan as the preferred substrate. Maximal catalytic activity is slightly shifted from 15°C (Xyn8) to 20°C for Xyn8-OsmC. Thermostability of Xyn8-OsmC is significantly changed in comparison to wild-type Xyn8. The OsmC-fusion variant showed an apparent decrease in thermostability between 40 and 45°C, while both proteins are highly instable at 50°C.  相似文献   
14.
Alcohol dehydrogenases are highly diverse enzymes catalysing the interconversion of alcohols and aldehydes or ketones. Due to their versatile specificities, these biocatalysts are of great interest for industrial applications. The adh3-gene encoding a group III alcohol dehydrogenase was isolated from the gram-positive bacterium Oenococcus oeni and was characterised after expression in the heterologous host Escherichia coli. Adh3 has been identified by genome BLASTP analyses using the amino acid sequence of 1,3-propanediol dehydrogenase DhaT from Klebsiella pneumoniae and group III alcohol dehydrogenases with known activity towards 1,3-propanediol as target sequences. The recombinant protein was purified in a two-step column chromatography approach. Crystal structure determination and biochemical characterisation confirmed that Adh3 forms a Ni2+-containing homodimer in its active form. Adh3 catalyses the interconversion of ethanol and its corresponding aldehyde acetaldyhyde and is also capable of using other alcoholic compounds as substrates, such as 1,3-propanediol, 1,2-propanediol and 1-propanol. In the presence of Ni2+, activity increases towards 1,3-propanediol and 1,2-propanediol. Adh3 is strictly dependent on NAD+/NADH, whereas no activity has been observed with NADP+/NADPH as co-factor. The enzyme exhibits a specific activity of 1.1 U/mg using EtOH as substrate with an optimal pH value of 9.0 for ethanol oxidation and 8.0 for aldehyde reduction. Moreover, Adh3 exhibits tolerance to several metal ions and organic solvents, but is completely inhibited in the presence of Zn2+. The present study demonstrates that O. oeni is a group III alcohol dehydrogenase with versatile substrate specificity, including Ni2+-dependent activity towards 1,3-propanediol.  相似文献   
15.
The cold-adapted pullulanase Pul13A is an industrial useful amylolytic enzyme, but its low solubility is the major bottleneck to produce the protein in recombinant form. In a previous approach, a complex and time-consuming purification strategy including a step-wise dialysis procedure using decreasing concentrations of urea to renature the insoluble protein from inclusion bodies had been established. In this study, a truncation strategy was developed to facilitate the purification and handling of the type-I pullulanase. Pul13A has a size of 155-kDa with a multidomain architecture that is composed of the following predicted modules: CBM41/E-set/Amy-Pul/DUF3372/E-set/E-set/E-set, with CBM and E-set domains being putative carbohydrate-binding modules, Amy-Pul is the catalytic region and DUF is a domain of unknown function. Consecutive N- and C-terminal deletions of domains were applied to construct minimized enzyme variants retaining pullulanase activity and exhibiting improved renaturation efficiencies. A total of seven truncation constructs were generated and tested, which still led to the production of inclusion bodies. However, the parallel deletion of the exterior CBM41 and E-set domain enabled the direct refolding of active enzymes during one-step dialysis in urea-free buffer. Catalytic properties of truncation construct Pul13A-N1/C1 were not impaired indicating that this enzyme variant may be superior for industrial applications over the full-length pullulanase.  相似文献   
16.
Isolation of Elaeagnus-compatible Frankia from soils collected in Tunisia   总被引:4,自引:0,他引:4  
The occurrence and diversity of Frankia nodulating Elaeagnus angustifolia in Tunisia were evaluated in 30 soils from different regions by a Frankia-capturing assay. Despite the absence of actinorhizal plants in 24 of the 30 soils, nodules were captured from all the samples. Eight pure strains were isolated from single colonies grown in agar medium. On the basis of 16S rRNA and GlnII sequences, seven strains were clustered with Frankia, colonizing Elaeagnaceae and Rhamnaceae in two different phylogenetic groups while one strain described a new lineage in the Frankia assemblage, indicating that Frankia strains genetically diverse from previously known Elaeagnus-infective strains are present in tunisian soils. Genomic fingerprinting determined by rep-PCR, and tDNA-PCR-SSCP, confirmed the wide genetic diversity of the strains.  相似文献   
17.
The rapid interconversion of carbon dioxide and bicarbonate (hydrogen carbonate) is catalysed by metalloenzymes termed carbonic anhydrases (CAs). CAs have been identified in all three domains of life and can be divided into five evolutionarily unrelated classes (α, β, γ, δ and ζ) that do not share significant sequence similarities. The function of the mammalian, prokaryotic and plant α‐CAs has been intensively studied but the function of CAs in filamentous ascomycetes is mostly unknown. The filamentous ascomycete Sordaria macrospora codes for four CAs, three of the β‐class and one of the α‐class. Here, we present a functional analysis of CAS4, the S. macrospora α‐class CA. The CAS4 protein was post‐translationally glycosylated and secreted. The knockout strain Δcas4 had a significantly reduced rate of ascospore germination. To determine the cas genes required for S. macrospora growth under ambient air conditions, we constructed double and triple mutations of the four cas genes in all possible combinations and a quadruple mutant. Vegetative growth rate of the quadruple mutant lacking all cas genes was drastically reduced compared to the wild type and invaded the agar under normal air conditions. Likewise the fruiting bodies were embedded in the agar and completely devoid of mature ascospores.  相似文献   
18.
Extremozyme     
Extremozymes for biotechnological applications Industrial biotechnology is a fast growing and proliferating field of research. Biocatalysis gradually replaces chemical processes and is widely used in textile or food industry or in the sustainable production of fine chemicals. Although currently most of the enzymes in industry are of mesophilic origin, the focus is changing towards more robust biocatalysts from extremophilic organisms. Research on extremophiles will progressively supply novel extremozymes for biotechnological applications. In particular (hyper‐)thermophiles, acidophiles or salt‐tolerant microorganisms are a rich source of industrial applicable and robust extremozymes with optimal activity under harsh conditions.  相似文献   
19.
Amidase 1 (AMI1), a specific indole-3-acetamide amidohydrolase, is an Arabidopsis thaliana amidase signature enzyme that catalyzes the synthesis of indole-3-acetic acid from indole-3-acetamide. Amidase signature family members catalyze a diverse range of enzymatic reactions and are found widespread in nature, for instance in bacteria, mammals, and plants. At the protein level, the family members share a conserved stretch of approximately 50-130 amino acids, the name-giving amidase signature. Elucidation of the crystal structures of a mammalian fatty acid amide hydrolase and the bacterial malonamidase E2 revealed an unusual Ser-cisSer-Lys catalytic triad in proteins of this family. In addition, other members, such as the amidase from Rhodococcus rhodochrous strain J1 or Sulfolobus solfataricus, seem to use an accessory Cys-cisSer-Lys center. AMI1 possesses all conserved amino-acid residues of the Ser-cisSer-Lys triad, but lacks the CX(3)C motif and therefore the Cys-cisSer-Lys catalytic site. Using a set of point-mutated variants of AMI1 and chemical modifications, we analyzed the relative importance of single amino-acid residues of AMI1 with respect to substrate conversion. These experiments revealed that a specific serine residue, Ser137, is essential for AMI1 enzymatic activity. We also report structural and functional differences of AMI1 from other amidase signature enzymes.  相似文献   
20.
Inteins are internal protein domains found inside the coding region of different proteins. They can autocatalytically self-excise from their host protein and ligate the protein flanks, called exteins, with a peptide bond via a post-translational process called protein cis-splicing. In contrast, protein trans-splicing involves inteins split into an N- and a C-terminal domain. Both domains are synthesized as two separate components and each joined to an extein; the intein domains can reassemble and link the joined exteins into one functional protein. In this study, we introduced three split sites into the PRP8 mini-intein of Penicillium chrysogenum and demonstrated for the first time trans-splicing of a fungal PRP8 intein. Two of the sites introduced allowed splicing to occur in trans while the third was not functional.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号