首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1377篇
  免费   109篇
  1486篇
  2022年   7篇
  2021年   15篇
  2020年   7篇
  2019年   9篇
  2018年   17篇
  2017年   8篇
  2016年   19篇
  2015年   23篇
  2014年   38篇
  2013年   57篇
  2012年   63篇
  2011年   81篇
  2010年   41篇
  2009年   51篇
  2008年   78篇
  2007年   73篇
  2006年   69篇
  2005年   70篇
  2004年   74篇
  2003年   51篇
  2002年   62篇
  2001年   47篇
  2000年   46篇
  1999年   46篇
  1998年   18篇
  1997年   17篇
  1996年   14篇
  1995年   18篇
  1994年   11篇
  1993年   17篇
  1992年   38篇
  1991年   37篇
  1990年   30篇
  1989年   24篇
  1988年   30篇
  1987年   20篇
  1986年   18篇
  1985年   16篇
  1984年   27篇
  1983年   7篇
  1982年   9篇
  1981年   7篇
  1980年   6篇
  1979年   14篇
  1978年   11篇
  1974年   5篇
  1972年   8篇
  1969年   7篇
  1968年   3篇
  1965年   4篇
排序方式: 共有1486条查询结果,搜索用时 0 毫秒
101.
Bacillus subtilis Marburg has only one intrinsic restriction and modification system BsuM that recognizes the CTCGAG (XhoI site) sequence. It consists of two operons, BsuMM operon for two cytosine DNA methyltransferases, and BsuMR operon for a restriction nuclease and two associated proteins of unknown function. In this communication, we analyzed the BsuM system by utilizing phage SP10 that possesses more than twenty BsuM target sequences on the phage genome. SP10 phages grown in the restriction and modification-deficient strain could not make plaques on the restriction-proficient BsuMR(+) indicator strain. An enforced expression of the wild type BsuMM operon in the BsuMR(+) indicator strain, however, allowed more than thousand times more plaques. DNA extracted from SP10 phages, thus, propagated became more but not completely refractory to XhoI digestion in vitro. Thus, the SP10 phage genome DNA is able to be nearly full-methylated but some BsuM sites are considered to be unmethylated.  相似文献   
102.
Oxidative DNA damage caused by a cysteine metal-catalyzed oxidation system (Cys-MCO) comprised of Fe(3+), O(2), and a cysteine as an electron donor was enhanced by copper, zinc superoxide dismutase (CuZnSOD) in a concentration-dependent manner, as reflected by the formation of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) and strand breaks. Unlike CuZnSOD, manganese SOD (MnSOD) as well as iron SOD (FeSOD) did not enhance DNA damage. The capacity of CuZnSOD to enhance damage to DNA was inhibited by a spin-trapping agent, 5, 5-dimethyl-1-pyrroline N-oxide (DMPO) and a metal chelator, diethylenetriaminepentaacetic acid (DETAPAC). The deoxyribose assay showed that hydroxyl free radicals were generated in the reaction of CuZnSOD with Cys-MCO. We found that the Cys-MCO system caused the release of free copper from CuZnSOD. CuZnSOD also caused the two-fold enhancement of a mutation in the pUC18 lacZ' gene in the presence of Cys-MCO when measured as a loss of alpha-complementation. Based on these results, we interpret the effects of CuZnSOD on Cys-MCO-induced DNA damage and mutation as due to reactive oxygen species, probably hydroxyl free radicals, formed by the reaction of free Cu(2+), released from oxidatively damaged CuZnSOD, and H(2)O(2) produced by the Cys-MCO system.  相似文献   
103.
Punta Toro virus (PTV), a member of the sandfly fever group of bunyaviruses, is assembled by budding at intracellular membranes of the Golgi complex. We have examined PTV glycoprotein transport, assembly, and release and the effects of brefeldin A (BFA) on these processes. Both the G1 and G2 proteins were transported out of the endoplasmic reticulum (ER) and retained in the Golgi complex in a stable structure, either during PTV infection or when expressed from a vaccinia virus recombinant. BFA treatment causes a rapid and dramatic change in the distribution of the G1 and G2 proteins, from a Golgi pattern to an ER pattern. The G1 and G2 proteins were found to be modified by medial but not trans Golgi network enzymes, in the presence or absence of BFA. We found that BFA blocks PTV release from cells but does not interfere with the intracellular assembly of infectious virions. Further, the BFA block of virus release is fully reversible, with high levels of virus release occurring upon removal of the inhibitor. It was also found that the release of PTV virions is polarized, occurring exclusively from the basolateral surfaces of the polarized Vero C1008 epithelial cell line.  相似文献   
104.
Modulation of the JNK pathway in liver affects insulin resistance status   总被引:12,自引:0,他引:12  
The c-Jun N-terminal kinase (JNK) pathway is known to be activated under diabetic conditions and to possibly be involved in the progression of insulin resistance. In this study, we examined the effects of modulation of the JNK pathway in liver on insulin resistance and glucose tolerance. Overexpression of dominant-negative type JNK in the liver of obese diabetic mice dramatically improved insulin resistance and markedly decreased blood glucose levels. Conversely, expression of wild type JNK in the liver of normal mice decreased insulin sensitivity. The phosphorylation state of crucial molecules for insulin signaling was altered upon modification of the JNK pathway. Furthermore, suppression of the JNK pathway resulted in a dramatic decrease in the expression levels of the key gluconeogenic enzymes, and endogenous hepatic glucose production was also greatly reduced. Similar effects were observed in high fat, high sucrose diet-induced diabetic mice. Taken together, these findings suggest that suppression of the JNK pathway in liver exerts greatly beneficial effects on insulin resistance status and glucose tolerance in both genetic and dietary models of diabetes.  相似文献   
105.
106.
107.
Numerous cytoplasmic adaptor proteins, including JIP1, FE65, and X11alpha, affect amyloid precursor protein (APP) processing and Abeta production. Dab1 is another adaptor protein that interacts with APP as well as with members of the apoE receptor family. We examined the effect of Dab1 on APP and apoEr2 processing in transfected cells and primary neurons. Dab1 interacted with APP and apoEr2 and increased levels of their secreted extracellular domains and their cytoplasmic C-terminal fragments. These effects depended on the NPXY domains of APP and apoEr2 and on the phosphotyrosine binding domain of Dab1 but did not depend on phosphorylation of Dab1. Dab1 decreased the levels of APP beta-C-terminal fragment and secreted Abeta. Full-length Dab1 or its phosphotyrosine binding domain alone increased surface levels of APP, as determined by surface protein biotinylation and live cell staining. A ligand for apoEr2, the extracellular matrix protein Reelin, significantly increased the interaction of apoEr2 with Dab1. Surprisingly, we also found that Reelin treatment significantly increased the interaction of APP and Dab1. Moreover, Reelin treatment increased cleavage of APP and apoEr2 and decreased production of the beta-C-terminal fragment of APP and Abeta. Together, these data suggest that Dab1 alters trafficking and processing of APP and apoEr2, and this effect is influenced by extracellular ligands.  相似文献   
108.
109.
GIBBERELLIN INSENSITIVE DWARF1 (GID1) encodes a soluble gibberellin (GA) receptor that shares sequence similarity with a hormone-sensitive lipase (HSL). Previously, a yeast two-hybrid (Y2H) assay revealed that the GID1-GA complex directly interacts with SLENDER RICE1 (SLR1), a DELLA repressor protein in GA signaling. Here, we demonstrated, by pull-down and bimolecular fluorescence complementation (BiFC) experiments, that the GA-dependent GID1-SLR1 interaction also occurs in planta. GA(4) was found to have the highest affinity to GID1 in Y2H assays and is the most effective form of GA in planta. Domain analyses of SLR1 using Y2H, gel filtration, and BiFC methods revealed that the DELLA and TVHYNP domains of SLR1 are required for the GID1-SLR1 interaction. To identify the important regions of GID1 for GA and SLR1 interactions, we used many different mutant versions of GID1, such as the spontaneous mutant GID1s, N- and C-terminal truncated GID1s, and mutagenized GID1 proteins with conserved amino acids replaced with Ala. The amino acid residues important for SLR1 interaction completely overlapped the residues required for GA binding that were scattered throughout the GID1 molecule. When we plotted these residues on the GID1 structure predicted by analogy with HSL tertiary structure, many residues were located at regions corresponding to the substrate binding pocket and lid. Furthermore, the GA-GID1 interaction was stabilized by SLR1. Based on these observations, we proposed a molecular model for interaction between GA, GID1, and SLR1.  相似文献   
110.
Previously, we found that anti-DDDED antibodies strongly inhibited in vivo nuclear transport of nuclear proteins and that these antibodies recognized a protein of 69 kD (p69) from rat liver nuclear envelopes that showed specific binding activities to the nuclear location sequences (NLSs) of nucleoplasmin and SV-40 large T-antigen. Here we identified this protein as the 70-kD heat shock cognate protein (hsc70) based on its mass, isoelectric point, cellular localization, and partial amino acid sequences. Competition studies indicated that the recombinant hsc70 expressed in Escherichia coli binds to transport competent SV-40 T-antigen NLS more strongly than to the point mutated transport incompetent mutant NLS. To investigate the possible involvement of hsc70 in nuclear transport, we examined the effect of anti-hsc70 rabbit antibodies on the nuclear accumulation of karyophilic proteins. When injected into the cytoplasm of tissue culture cells, anti-hsc70 strongly inhibited the nuclear import of nucleoplasmin, SV-40 T-antigen NLS bearing BSA and histone H1. In contrast, anti-hsc70 IgG did not prevent the diffusion of lysozyme or 17.4-kD FITC-dextran into the nuclei. After injection of these antibodies, cells continued RNA synthesis and were viable. These results indicate that hsc70 interacts with NLS-containing proteins in the cytoplasm before their nuclear import.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号